An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field

Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris; Olsen, Nils

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field

Livia Kother¹, Magnus D. Hammer², Christopher C. Finlay¹, Nils Olsen¹
¹ Division of Geomagnetism, DTU Space, Technical University of Denmark
² Copenhagen, Denmark

Summary
We produce a new model of the global lithospheric magnetic field based on 3-component vector field observations at all latitudes from the CHAMP satellite using an equivalent source technique.

Method
A regularized iteratively reweighted least squares algorithm is applied. Data error covariance matrices are implemented, including both the latitude dependence of data error variances \(\sigma^2 \) (Fig.1) and covariances \(\mathbf{C} \) between the vector field components due to unmodelled sources. The regularization norm \(\mathbf{R} \) is defined as the Euclidean length of the model solution. Our scheme iteratively minimizes:

\[
\Theta(m) = \mathbf{d} - \mathbf{G} \mathbf{m} + \lambda \mathbf{R}(\mathbf{m})
\]

Huber weighting ensures a robust solution in the presence of non-Gaussian data errors

\[
\mathbf{H}_{k+1} = \min_{\mathbf{H}} \left(\frac{1}{2} \mathbf{H} - \frac{1.5}{\mathbf{d} - \mathbf{G} \mathbf{m}_k} / \sigma^2 \right)
\]

An initial unregularized (\(\lambda = 0 \)) model is derived using 10 iterations. The final model is obtained with 5 further iterations using quadratic regularization and \(\lambda = 3 \times 10^{-13} \).

Equivalent Source Method
The equivalent potential field sources \(\mathbf{m} \) (monopoles) are arranged in an icosahedron grid (Fig.2), consisting of \(K = 30722 \) vertices and midpoints, placed at a depth of 100km below the Earth's surface. The derived model can be transformed into a spherical harmonic representation by:

\[
g_n^m = \sum_{k=1}^{K} \frac{1}{\sigma_n^2} m_k P_n^m (\cos \theta_k) \cos (\phi_k)
\]

\[
h_n^m = \sum_{k=1}^{K} \frac{1}{\sigma_n^2} m_k P_n^m (\cos \theta_k) \sin (\phi_k)
\]

Results and Outlook
The presented model has a power spectrum that compares well to CHAOS-4, MF7 and CMS5 (cf. Poster EGU2014-6883) models to degree \(n = 100 \) (Fig.4). Ongoing investigations concern non-quadratic regularization using maximum entropy. Looking forward, we plan to explore local grid refinement options in order to incorporate aeromagnetic survey data.

Fig.3 Left: Final model degree correlation with CHAOS-4, MF7, GRIMM-L120 and CMS5. Right: Sensitivity matrix between final model and CHAOS-4. The scale saturates at 100 nT.

Fig.4 Left: Modelled lithospheric radial magnetic field at the Earth’s surface for degree \(n = 16 \times 180 \). The scale saturates at 200 nT. Right: Power spectrum for MF7, CMS and CHAOS-4 models in comparison to model results with different regularization damping values. The chosen model is represented by the red line.