Differences in the Texture of Chalk as observed by NMR

Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

Publication date:
2014

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In this study, three cases under investigation illustrate how changes in the surface-to-volume ratio of chalk affect the low-field Nuclear Magnetic Resonance signal:

1. Outcrop chalk saturated with high salinity brine showed that saturation with divalent ions can cause major shifts in the T_2 curve.

2. Fluid samples where precipitation reactions caused shifts in the T_2 curve due to the creation of crystals within the fluid.

3. Two types of chalk with different surface-to-volume ratio, saturated with the same brines produced different NMR signals.

- NMR signal decay time (known as relaxation) is affected by the solid phase:
 - Differences in the rock texture
 - Precipitants within the pore space
 - Variations in the bound water thickness

- Transverse relaxation rate, $1/T_2$:
 \[
 \frac{1}{T_2} = \frac{S}{\rho V}
 \]
 ρ: surface relaxivity
 S: surface-to-volume ratio

- Outcrop chalk with low surface-to-volume ratio saturated with divalent ions:
 - Brines that contain precipitants after contact with chalk:
Parameter	ST-Samples	MA-Samples
Porosity (%)	42	38
Grain density (g/cm³)	2.71	3.24
Permeability (mD)	6	3
Carbonate content (%)	99	99
Specific surface (m²/g)	1.7	1.6
Specific surface of the IR (m²/g)	50	50

- Outcrop chalk with high surface-to-volume ratio saturated with divalent ions:
 - Brines with precipitants Concentration (g/L)
 - Magnesium chloride solution: 58.1 g/L
 - Calcium chloride solution: 67.7 g/L

- NMR Relaxation in the homogenous system of brine saturated chalk:

- Low field NMR was successfully used to identify changes in the surface-to-volume ratio.

- Samples with high surface-to-volume ratio result in smaller relaxation times. Samples saturated with Mg-rich brines, brines containing precipitants, and chalk with different texture illustrate this.

Acknowledgement
The financial support from DONG Energy, Maersk oil, Danish energy agency and DTU is gratefully acknowledged.

Kenyon, W. E., Petrophysical principles of applications of NMR logging: Log Analyst, 38, 21-43, (1997)

Katika et al., Nuclear magnetic resonance and sound-velocity measurements of chalk saturated with magnesium rich brine, Poromembrane V.