Hybrid Heat Pump Solutions for Industrial Energy Savings

Jensen, Jonas Kjær

Publication date:
2013

Citation (APA):
Hybrid Heat Pump Solutions for Industrial Energy Savings

DTU International Energy Conference
September 10th-12th 2013

Jonas Kjær Jensen
PhD Student
Thermal Energy Section
Agenda

• Introduction to the hybrid absorption compression heat pump
• Advantages of zeotropic mixtures specifically NH$_3$/H$_2$O
• Evaluation of important design parameters.
• Prospect for high temperature development $T_{supply} < 110^\circ$C.
• Conclusion & future work
The Hybrid Heat Pump

\[\dot{Q}_{\text{abs}} \]

\[m_{\text{vapour}} \rightarrow W_{\text{comp}} \]

\[Q_{IHEX} \]

\[m_{\text{rich}} \rightarrow \text{Absorber} \]

\[\text{Mixer} \]

\[\text{IHEX} \]

\[\text{Desorber} \]

\[m_{\text{lean}} \]

\[m_{\text{vapour}} \rightarrow W_{\text{pump}} \]

\[\dot{Q}_{\text{des}} \]

\[\text{Liquid/vapour separator} \]
Advantages of Zeotropic Mixtures
Reduction of Vapor Pressure

![Graph showing the relationship between temperature and vapor pressure for zeotropic mixtures. The graph includes curves for different compositions (x=0.0 to x=1.0) and highlights the critical point. The mixtures R717 and R718 are indicated.]
Advantages of Zeotropic Mixtures

Reduction of Vapor Pressure
Advantages of Zeotropic Mixtures

Reduction of Vapor Pressure

![Graph showing the temperature and vapor pressure relationship for R717 and R718 mixtures.](graph)

- **R717**
 - Temperature: 63-230°C
 - Vapor Pressure: 28 bar

- **R718**
 - Temperature: 155-330°C
 - Vapor Pressure: 130 bar

The graph illustrates the critical points for each mixture, showing how the vapor pressure changes with temperature.
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

![Graph showing temperature vs. heat load for a sink and source system.](image-url)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

- Pure Refrigerant

Heat Load [kW]
Temperature [°C]

Sink
Source

Pure Refrigerant
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

<table>
<thead>
<tr>
<th>Pure Refrigerant</th>
<th>Zeotropic Mixture</th>
<th>Zeotropic Mixture</th>
<th>Pure Refrigerant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sink</td>
<td>Source</td>
<td>Temperature [°C]</td>
<td>Heat Load [kW]</td>
</tr>
<tr>
<td>Pure Refrigerant</td>
<td>Zeotropic Mixture</td>
<td>Pure Refrigerant</td>
<td>Zeotropic Mixture</td>
</tr>
</tbody>
</table>
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

<table>
<thead>
<tr>
<th>Sink</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature [°C]</td>
<td>Heat Load [kW]</td>
</tr>
<tr>
<td>Pure Refrigerant</td>
<td>Zeotropic Mixture</td>
</tr>
<tr>
<td>Reduced ΔT => Reduced Entropy Generation</td>
<td></td>
</tr>
</tbody>
</table>

DTU Mechanical Engineering, Technical University of Denmark
DTU International Energy Conference 11.9.2013
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x = 0.9 \]

\[T [^\circ C] \]

\[Q [kW] \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(x = 0.8 \)

\(T \text{ [°C]} \)

\(Q \text{ [kW]} \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[T \ [\degree C] \]
\[Q \ [\text{kW}] \]

\(x = 0.7 \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\dot{Q} [kW] vs. T [°C]

$\times=0.6$
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[T \text{[°C]} \]
\[Q \text{[kW]} \]

\[x=0.5 \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

$x = 0.3$

$\dot{Q} [kW]$ vs. $T [^\circ C]$ for $x = 0.3$
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

\[x = 0.3\]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(T \text{ [°C]} \)

\(Q \text{ [kW]} \)

\(x=0.2 \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(T [^\circ C] \)

\(Q [kW] \)

x=0.1

0 20 40 60 80 100

0 50 60 70 80 90 100

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference 11.9.2013
The Hybrid Heat Pump: Design parameters x_r & f
Influence of \(x_r \) & \(f \): \(T_{\text{sink, out}} = 110^\circ C, \Delta T_{\text{lift}} = 30^\circ C \)

Inputs and Assumptions

<table>
<thead>
<tr>
<th>External Inputs</th>
<th>Internal Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{sink, in}} =)</td>
<td>(\Delta T_{\text{pinch, abs}} = 5^\circ C)</td>
</tr>
<tr>
<td>(80^\circ C)</td>
<td>(\Delta T_{\text{pinch, des}} = 5^\circ C)</td>
</tr>
<tr>
<td>(T_{\text{sink, out}} =)</td>
<td>(\eta_{\text{is, comp}} = 0.7)</td>
</tr>
<tr>
<td>(110^\circ C)</td>
<td>(\eta_{\text{is, pump}} = 0.7)</td>
</tr>
<tr>
<td>(T_{\text{source, in}} =)</td>
<td>(\epsilon_{\text{IHEX}} = 0.8)</td>
</tr>
<tr>
<td>(80^\circ C)</td>
<td></td>
</tr>
<tr>
<td>(m_{\text{sink}} =)</td>
<td></td>
</tr>
<tr>
<td>(1\text{kg/s})</td>
<td></td>
</tr>
<tr>
<td>(m_{\text{source}} =)</td>
<td></td>
</tr>
<tr>
<td>(10\text{kg/s})</td>
<td></td>
</tr>
</tbody>
</table>

Pressure drops are neglected.
Influence of x_r & f:

$T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of $x_r \ & f$: $T_{sink.out} = 110^\circ C, \Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,\text{out}} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of $x_r \ & \ f$: $T_{sink,out} = 110^\circ C, \ \Delta T_{lift} = 40^\circ C$
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 50^\circ C$
Working domain hybrid heat pumps

Constraints corresponding to standard refrigeration components

<table>
<thead>
<tr>
<th>Design Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP > 4$[-]$</td>
</tr>
<tr>
<td>P_H < 25[bar]</td>
</tr>
<tr>
<td>P_L > 1[bar]</td>
</tr>
<tr>
<td>VHC > 2[MJ/m3]</td>
</tr>
<tr>
<td>T_H < 160[°C]</td>
</tr>
</tbody>
</table>
Working domain hybrid heat pumps

\[T_{out} = 110[^\circ C] \quad T_{lift} = 30[^\circ C] \]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}] \]

Plot showing possible design options:
- \(\text{COP} < 4 \) in cyan
- \(P_H > 25 \) bar in red
- \(P_L < 1 \) bar in blue

\(x_r \) in [kg/kg] on the x-axis,
\(f \) in [-] on the y-axis.
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ \text{C}] \quad T_{\text{lift}} = 30[^\circ \text{C}] \]

Possible design options:
- COP < 4
- \(P_H > 25 \text{[bar]} \)
- \(P_L < 1 \text{[bar]} \)
- \(\text{VHC} < 2 \text{[MJ/m}^3\text{]} \)
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}] \]
Working domain hybrid heat pumps

Constraints corresponding to supercritical CO$_2$ refrigeration components and new synthetic oils

<table>
<thead>
<tr>
<th>Design Constraints</th>
<th>COP</th>
<th>$> 4[-]$</th>
<th>Economic</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_H</td>
<td>$< 130[bar]$</td>
<td></td>
<td>Standard refrigeration equipment</td>
</tr>
<tr>
<td>P_L</td>
<td>$> 1[bar]$</td>
<td></td>
<td>No entrainment of air from ambient</td>
</tr>
<tr>
<td>$V HC$</td>
<td>$> 4[MJ/m^3]$</td>
<td></td>
<td>Economic ($\dot{Q}{abs}/\dot{V}{suc,comp}$)</td>
</tr>
<tr>
<td>T_H</td>
<td>$< 250[^\circ C]$</td>
<td></td>
<td>Thermal stability of oil</td>
</tr>
</tbody>
</table>
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

Possible design options

COP < 4[−]
Working domain hybrid heat pumps

$T_{out} = 110^{\circ}C \quad T_{lift} = 30^{\circ}C$

Possible design options
- COP < 4
- $P_H > 130$ bar
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}] \]

Possible design options:
- \(\text{COP} < 4 \)
- \(P_H > 130 \text{[bar]} \)
- \(P_L < 1 \text{[bar]} \)

\[x_r \text{[kg/kg]} \]

\[f \]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

- Possible design options:
 - \(\text{COP} < 4 \)
 - \(P_H > 130 \text{[bar]} \)
 - \(P_L < 1 \text{[bar]} \)
 - \(\text{VHC} < 4 \text{[MJ/m}^3\text{]} \)
Working domain hybrid heat pumps

$T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}]$

Possible design options:
- $\text{COP} < 4[-]$
- $P_H > 130[\text{bar}]$
- $P_L < 1[\text{bar}]$
- $VHC < 4[\text{MJ/m}^3]$
- $T > 250[^{\circ}\text{C}]$
Working domain hybrid heat pumps: $T_{sink,out}$

\[T_{out} = 120[^\circ C] \quad T_{lift} = 30[^\circ C] \]

Possible design options:
- COP < 4 $[-]
- P_H > 130[\text{bar}]
- P_L < 1[\text{bar}]
- VHC $< 4[\text{MJ/m}^3]
- T > 250[^\circ C]
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 130[^\circ C]$, $T_{lift} = 30[^\circ C]$

Possible design options:
- $\text{COP} < 4[-]$,
- $P_H > 130[\text{bar}]$,
- $P_L < 1[\text{bar}]$,
- $VHC < 4[\text{MJ/m}^3]$,
- $T > 250[^\circ C]$.

$\rho_r [\text{kg/kg}]$
Working domain hybrid heat pumps: $T_{sink,out}$

$$T_{out} = 140^\circ C \quad T_{lift} = 30^\circ C$$

Possible design options:
- COP < 4
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- VHC < 4 [MJ/m3]
- $T > 250^\circ C$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 150[^\circ C]$ $T_{lift} = 30[^\circ C]$

Possible design options:
- $COP < 4$[
- $P_H > 130$[bar]
- $P_L < 1$[bar]
- $VHC < 4$[MJ/m3]
- $T > 250[^\circ C]$
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 160[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps: $T_{sink, out}$

\[
T_{out} = 170[^\circ C] \quad T_{lift} = 30[^\circ C]
\]

Possible design options:
- $\text{COP} < 4$ [-]
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- $VHC < 4$ [MJ/m3]
- $T > 250[^\circ C]$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 180[^\circ C]$ $T_{lift} = 30[^\circ C]$

Possible design options:
- COP < 4
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- VHC < 4 [MJ/m3]
- $T > 250[^\circ C]$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 190[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 200[^\circ C]$ $T_{lift} = 30[^\circ C]$

Possible design options
- COP < 4
- $P_H > 130[\text{bar}]$
- $P_L < 1[\text{bar}]$
- $VHC < 4[\text{MJ/m}^3]$
- $T > 250[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out}=180[^\circ C]$ $T_{lift}=30[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^\circ C]$ $T_{lift} = 35[^\circ C]$

Possible design options:
- COP < 4 [-]
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- VHC < 4 [MJ/m3]
- $T > 250[^\circ C]$
Working domain hybrid heat pumps: \(\Delta T_{\text{lift}} \)

\[
T_{\text{out}} = 180[^\circ C] \quad T_{\text{lift}} = 40[^\circ C]
\]
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^{\circ}\text{C}]$ $T_{lift} = 45[^{\circ}\text{C}]$

Possible design options:
- $\text{COP} < 4$ [-]
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- $\text{VHC} < 4$ [MJ/m3]
- $T > 250$ [°C]
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^{\circ}\text{C}]$ $T_{lift} = 50[^{\circ}\text{C}]$
Future work

- Heat transfer characteristics, influence of x_r.
- Identification of suitable oils.
- Material compatibility with NH$_3$/H$_2$O should be investigated.
- Two-stage concepts should be evaluated, this could reduce compressor discharge temperature and increase COP.
- Thermoeconomic analysis and optimization should be applied to find cost efficient designs.
Conclusion

• COP and design parameters are highly dependent on x_T and f.
• Standard refrigeration components can be used upto 110[°C].
• Supercritical CO$_2$ components can be used upto 200[°C].
• ΔT_{lift} upto 45[°C] can be attained.
• Dominating constraint is the compressor discharge temperature.
• Hence thermal stability of oil should be tested.
• Case studies should be performed to show the feasibility of the hybrid heat pump implementation.
Thank you for your attention.
Questions?