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ABSTRACT

Human gait is an important biometric feature for identi�cation of people. In this paper we present a new dataset for gait
recognition. The presented database overcomes a crucial limitation of other state-of-the-art gait recognition databases. More
speci�cally this database addresses the problem of dynamic and static inter object occlusion. Furthermore this dataset offers
three new kinds of gait variations, which allow for challenging evaluation of recognition algorithms. In addition to presenting
the database we present two baseline algorithms (Color histograms, Gait Energy Image) to perform person identi�cation using
gait. These algorithms already show promising results on the presented database.

Keywords: biometrics, gait recognition, database, occlusion, gait energy image.

1 INTRODUCTION
Person identi�cation by biometric features is a well
established research area. The main focus has so far
been on physiologic features such as face, iris and �n-
gerprint. In addition, behavior based features such as
voice, signature and gait can be used for person identi-
�cation. In this work we contribute to the research of
person identi�cation using gait. The main advantage of
using these features over other physiologic features is
the possibility to identify people from large distances
and without the person’s direct cooperation. For ex-
ample, in low resolution images, a person’s gait signa-
ture can be extracted, while the face is not even visi-
ble. Also no direct interaction with a sensing device
is necessary, which allows for undisclosed identi�ca-
tion. Thus gait recognition has great potential in video
surveillance, tracking and monitoring.

Studies suggest [13] that if all gait movements are
considered, gait is unique. These �ndings are the basis
of the assumption that recognition using only gait must
also be possible for a computer system. Over the last
decade the �eld of recognizing people using gait fea-
tures has received remarkable attention. A multitude of
methods and techniques in feature extraction as well as
in classi�cation have been developed. Experiments are
promising and encouraging.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for pro�t
or commercial advantage and that copies bear this notice
and the full citation on the �rst page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior speci�c permission and/or a fee.

While good datasets for training and evaluation are
available (See summary in Section 3), we �nd that all
of them ignore to address one important challenge: The
challenge of occlusions. Occlusions are annoying but
are unfortunately omnipresent in practice. Especially
in a real word surveillance scenario, occlusions occur
frequently. Typical gait recognition algorithms require
a full gait cycle1 for recognition. In the case of oc-
clusion, however, it becomes a challenging problem to
extract a full gait cycle. In heavy occlusion, parts of
the gait cycle might be visible, while other parts are
obscured by another person walking in front. The chal-
lenge then lies in stitching together parts of different
gait cycles in order to obtain one complete gait cycle.
Alternatively gait recognition algorithms could be de-
veloped for which parts of the gait cycle are suf�cient.
While to date, no algorithm is capable of handling par-
tially observable gait cycles, we here present the TUM-
IITKGP gait dataset, which can be used to speci�cally
address occlusions.

To this end the presented database includes record-
ings with two kinds of occlusions. On the one hand
dynamic occlusions by people walking in the line of
sight of the camera and on the other hand static occlu-
sions by people who are occluding the person of inter-
est by standing in the scene. In addition to speci�cally
addressing the occlusion challenge, the TUM-IITKGP
dataset also features three new con�guration variations,
which allows to test algorithms for their capability of
handling changes in appearance.

We present two baseline algorithms for recognition
on this dataset. The �rst algorithm uses appearance

1 A full gait cycle is the time interval between successive instances of
initial foot-to-�oor contact for the same foot

WSCG 2011 Communication Papers 99



�� ��

�� �� ���� ��

��	
��

��

��

���

Figure 1: Physical setup of the recording

information based on color histograms. Thus this al-
gorithm is not precisely a gait recognition algorithm,
but shows promising results. The second algorithm is
an actual gait recognition algorithm based on the well
known Gait Energy Image (GEI) features [6][7]. It can
be seen that this baseline algorithm which uses only
motion information and no color information already
shows excellent results.

Section 2 gives a summary of related gait recognition
databases. Section 3 presents the new dataset in de-
tails. We then present in Section 4.1 a simple baseline
recognition system based on color histograms, as well
as an actual gait recognition baseline algorithm in Sec-
tion 4.2. Results are given in Section 6 and we conclude
in Section 7.

2 RELATED GAIT DATABASES
Since the �eld of gait recognition has been in exis-
tence for roughly a decade, the research community has
long utilized publicly available databases for compara-
tive performance evaluation.

Table 1 summarizes the most prominent gait recogni-
tion corpora. This table also shows the important fea-
tures of the particular databases. The most important
features of a database are the number of subjects (which
should be high), as well as a good set of person varia-
tions. These variations include, but are not limited to,
view angle, clothing, shoe types, surface types, carrying
condition, illumination, and time.

The �rst available dataset was the 1998 UCSD
Dataset [11], which contains merely 6 subjects. Most
of the following early gait recognition databases
were published in 2001 from various institutions
[2][3][5][9][10][12]. Those datasets feature a medium
number (about 25) of subjects. It was then found, that
for meaningful evaluation, datasets should contain at
least 30 subjects and possibly more.

The most comprehensive database to date, which fea-
tures a large set of subjects as well as a substantial set
of variations is probably the HumanID Gait Challenge
[15]. Other databases such as CASIA (Dataset B) [1]
also feature high numbers of subjects and a signi�cant
number of variations. CASIA additionally features an
exhaustive number of views, which allows for precise
3D reconstruction.

3 THE TUM-IITKGP DATABASE
As established in the introduction, the rationale behind
recording a new gait recognition dataset is to speci�-
cally address the problem of occlusions, which would
frequently occur in real world applications. The TUM-
IITKGP Database currently consists of 840 sequences
from 35 individuals.

The physical setup can be seen in Figure 1. The cam-
era is set up in a rather narrow hallway, re�ecting a re-
alistic setup in a potential real world surveillance appli-
cation. The camera is positioned at a medium height
of 1.85 meters and is oriented perpendicular to the hall-
way direction. Thus people are walking from right to
left and from left to right in the image.

Each person is captured in six different con�gura-
tions. Furthermore, each of the con�gurations is re-
peated two times in a right-to-left motion and two times
in a left-to-right motion, resulting in a total of 840 se-
quences. Table 2 and Figure 2 show the six con�g-
urations for each person. Each person was primarily
recorded in a regular walking con�guration, followed
by three degenerated con�gurations including hands in
pocket, backpack and gown. These con�gurations can
be used to evaluate recognition methods in the presence
of different kinds of gait variation.

Furthermore two con�gurations are speci�cally de-
signed to evaluate performance in the presence of oc-
clusions. One is with two people walking past (dynamic
occlusion). The other is with two people just standing
in the line of sight (static occlusion).

In all of the six recordings, the person of interest (the
subject) is starting to walk at point A1 and ending at
point A2. In case of dynamic occlusions (con�gura-
tion 5), the two other people are walking from B1/C1
to B2/C2, respectively. For static occlusions (con�gu-
ration 6), the two additional people are standing at D1
and D2, respectively.

Overall, each con�guration is repeated 4 times. For
the second iteration the walking directions are inversed.
Thus the subject is walking back from A2 to A1, and in
case of occlusion con�guration 5, the occluding peo-
ple are also walking in the opposite direction. The third
iteration is equivalent to the �rst and the fourth is equiv-
alent to the second.

Short Name Description
Conf. 1 regular Regular walking
Conf. 2 pocket Walk with hands in

pocket
Conf. 3 backpack Walk with a backpack
Conf. 4 gown Walk with gown
Conf. 5 dynamic occlu-

sion
Occlusion by two walk-
ing people

Conf. 6 static occlusion Occlusion by two
standing people

Table 2: Walking con�gurations
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Database, Ref. #subjs. #seqs. Environment Time Variations
UCSD ID [11] 6 42 Outdoor, Wall

background
1998 Time (minutes)

CMU Mobo [5] 25 600 Indoor, Tredmill 2001 Viewpoint, Walking speeds,
Carrying conditions, Surface
incline

Georgia Tech [9] 15 268 Outdoor 2001 Time(6 months), viewpoint
18 20 Magnetic tracker 2001 Time(6 months)

HID-UMD Dataset 1
[10]

25 100 Outdoor 2001

HID-UMD Dataset 2
[3]

55 222 Outside, Top
mounted

2001 viewpoints (front, side), time

MIT, 2001 [2] 24 194 Indoor 2001 view, time (minutes)
Soton Small Database
[12]

12 - Indoor, green back-
ground

2001 carrying condition, clothing,
shoe, view

Soton Large Database
[12]

115 2128 Indoor, Outdoor,
Tredmill

Summer
2001

view

HumanID Gait Chal-
lenge [15]

122 1870 Outdoor May &
Nov. 2002

viewpoint, surface, shoe, carry-
ing condition, time (months)

CASIA Database A [1] 20 240 Outdoor Dec. 2001 3 viewpoints
CASIA Database B [1] 124 13640 Indoor Jan 2005 11 viewpoints, clothing, carry-

ing condition
CASIA Database C [1] 153 1530 Outdoor, night,

thermal camera
2005 speed, carrying condition

TUM-IITKGP 35 840 Indoor, Hallway,
Occlusions

Apr. 2010 time (minutes), carrying condi-
tion, occlusions

Table 1: Comparison of other gait recognition databases

(a) regular (b) pocket (c) backpack

(d) gown (e) dynamic occlu-
sion

(f) static occlusion

Figure 2: Example images from all six con�gurations

4 BASELINE ALGORITHMS
In order to show �rst recognition results and in order
to have a means of comparing other algorithms for fu-
ture performance evaluation, we applied two baseline
algorithms to the database.

Both methods are non-model based. The �rst method
uses color histograms for feature extraction, the second
method uses Gait Energy Image (GEI) [7]. Obviously
using only color information has a multitude of draw-
backs, most importantly the fact that this kind of feature
is not invariant to change of clothing.

The second method however is a true gait recognition
method, because the Gait Energy Image captures tem-
poral motion over a gait cycle and is independent from
any appearance based features such as color.

4.1 Baseline Algorithm using Color
Histograms

Using color histograms is a widely used technique for
recognition and re-identi�cation of people. This holds
especially true for short-time recognition, where people
do not change their appearance and clothing. Color his-
tograms are extremely fast and easy to compute. Fur-
thermore no detection of body parts is necessary, be-
cause the feature can be extracted globally from the
full person. Besides the problem that color features
fail in case of change in clothing, another drawback is
that they are very sensitive to lighting differences espe-
cially when recognition is to be performed between dif-
ferently calibrated cameras. This however can be han-
dled using adaptive appearance transformations such as
the Brightness Transfer Function [14].For this work, we
use 4-by-4-by-4 3D color histograms H. Thus each
person in the database is represented by a 4096 dimen-
sional sparse feature vector. To extract this feature vec-
tor, we �rst use background modeling based on Gaus-
sian Mixture Models [16] to segment foreground blobs.
The color histograms are then computed over all fore-
ground segments on the full sequence.For recognition
we use nearest neighbor classi�cation, where H j is the



(a) regular (b) pocket (c) backpack (d) gown

Figure 3: Gait Energy Images for four con�gurations

j-th sample from the test set, and H i is the mean of the
samples in the i-th class from the training set.

L j = argmin
i

dX (H j;H i) (1)

Here dX = fdeuclid ;dcorr;dbhatt ;dchig is the distance
function of one of four different histogram comparison
measures: Euclidean distance, normalized correlation,
Bhattacharyya distance and Chi Squared distance with
the following respective formulas:

deuclid =
r

å
Bins

(H1�H2)2 (2)

dcorr = 1� åBins (H1� flH1)(H2� flH2)
åBins

p
(H1� flH1)2(H2� flH2)2

(3)

dbhatt = 1�å
Bins

s
H1

jH1j
H2

jH2j
(4)

dchi = å
Bins;H1+H2 6=0

(H1�H2)2

H1 + H2
(5)

In the experiments it turned out that all four of these dis-
tance measures performed similarly well with a slight
tendency of the Chi Squared distance being the best.
See results in Section 6.

4.2 Baseline Algorithm based on Gait
Energy Image

In contrast to the color histogram method presented
in the previous section, GEI [6] is considered a true
gait recognition method, because the used features only
make use of silhouette and motion information. Ap-
pearance and color information is discarded.

4.3 Feature Extraction using GEI
In essence, the Gait Energy Image is an arithmetic mean
of the binarized foreground blobs. Denote Bt the fore-
ground silhouette in frame t. Then, the Gait Energy Im-
age g is formally de�ned as the silhouette average over
one full gait cycle:

g(x;y) =
1
T

T

å
t=1

Bt(x;y) (6)

Here, T is the number of frames in a full gait cycle.
Using this kind of feature greatly reduces the available

data, since all the gait information is compressed to
only one gray level image. Figure 3 shows Gait En-
ergy Images for the �rst four con�gurations. It has been
shown that this representation suf�ces for person iden-
ti�cation [7].

4.4 Feature Space Reduction
The gait energy images g(x;y) have a resolution of
130� 200 pixels. Thus the feature vector is still large
with 26000 dimensions. We apply principal compo-
nent analysis (PCA) followed by multiple discriminant
analysis (MDA) to reduce the size of the feature vec-
tor. A combination of PCA and MDA, as proposed in
[8], results in the best recognition performance. While
PCA seeks a projection that best represents the data [4],
MDA seeks a projection that best separates the data [8].

Assume that the training set, consisting of N d-
dimensional training vectors fg1;g2; : : : ;gNg, is given.
Then the projection to the d0 < d dimensional PCA
space is given by

yk = Upca(gk�g); k = 1; : : : ;N (7)

Here Upca is the d0� d transformation matrix with the
�rst d0 orthonormal basis vectors obtained using PCA
on the training set fg1;g2; : : : ;gNg and g = åN

k=1 gk is
the mean of the training set. After PCA, MDA is per-
formed. It is assumed that the reduced vectors Y =
fy1;y2; : : : ;yNg belong to c classes. Thus the set of re-
duced training vectors Y is composed of its c disjunct
subsets Y = Y1\Y2\ : : :Yc. The MDA projection has
by construction (c� 1) dimensions. These (c� 1) di-
mensional vectors zk are obtained as follows

zk = Vmdayk; k = 1; : : : ;N (8)

where Vmda is the transformation matrix obtained using
MDA. This matrix results from optimizing the ratio of
the between-class scatter matrix SB and the within-class
scatter matrix SW :

J(V ) =
jeSBj
jeSW j

=
jV T SBV j
jV T SWV j

: (9)

Here the within-class scatter matrix SW is de�ned as
SW = åc

i=1 Si, with Si = åy2Yi(y�mi)(y�mi)T and
mi = 1

Ni
åy2Yi y. Where Ni = jYij is the number of vec-

tors in Yi. The between-class scatter SB is de�ned as
SB = åc

i=1 Ni(mi�m)(mi�m)T , with m = 1
N åc

i=1 Nimi.
Finally, for each Gait Energy Image, the correspond-

ing gait feature vector is computed as follows

zk = UpcaVmda(gk�g) = T (gk�g); k = 1; : : : ;N
(10)

4.5 Classi�cation
For further classi�cation, we use nearest neighbor clas-
si�cation on this reduced set of feature vectors. To this
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(a) Baseline 2a (b) Baseline 2b

Figure 4: Cropped GEI regions used for recognition

end, �rst the mean feature vector zi is calculated for
each class.

zi =
1
jZij å

z2Zi

z: (11)

For each Gait Energy Image from the test set �g j, we
perform the identical transformation to get the reduced
feature vector

�z j = T ( �g j�g) (12)

Person identi�cation then becomes a nearest-
neighbor classi�cation. We assign a class label L j to
each test gait image according to

L j = argmin
i
jj�z j� zijj (13)

4.6 Implementation details

Besides the principle approach as it was described
above, there are several technical details that had to be
considered. First, for our experiments, we align the
foreground blobs Bt before calculating the GEI. This is
done by centering each blob Bt based on the centroid
of the top 10% of each blob. This way it is guaranteed
that the heads, which are most stable in recognition,
are all aligned at the same position.

Second, we found (just like others have [7] [15]), that
using the full Gait Energy Images for recognition does
not result in the best performance. Especially the lower
region of the image is quite troublesome, because of
shadows and re�ections on the ground, as well as dif-
ferent �oor types (as in [15]). Therefore we decided to
use only the top 80% of the GEIs. Figure 4 depicts the
cropping regions.

In addition we experimented with a second cropped
variation of the GEIs. Here we use the top 80% of the
image, and only the rightmost 60% of the image. This
way, only the frontal part of the persons are included.
This is bene�cial, because this way the gown and the
backpack have a much smaller impact on the Gait En-
ergy Images. In Section 6 we show that this cropping
indeed leads to improved recognition rates.

Figure 5: Rank N recognition rates for the three Base-
line variants

5 EVALUATION METHOD
The presented gait recognition database is meant to be
a basis for performance evaluation of various present
and future gait recognition algorithms. Therefore, eval-
uation should be carried out the same way for all algo-
rithms. We propose the following procedure:

The goal is to recognize a person, which has only
been seen once before. Thus the training set consists
of merely one single sequence of each person. We de-
�ne that this sequence is one from the �rst con�guration
(regular walking). Consequently the test set consists of
23 sequences for each person ( three for regular and
four each for the other �ve con�gurations). Because
the database consists of 35 people, the overall test set
consists in total of 805 sequences.

Since there are four sequences for the �rst con�gura-
tion, a 4-fold cross validation is performed. This means
that there are 4 rounds of evaluation, each time with one
of the four sequence in regular con�guration as the sole
training sample, and all the rest as the test. The result is
then averaged over the 4 rounds of evaluation.

6 RESULTS
We evaluate on the one hand the color histogram based
recognition method (Baseline 1), described in Section
4.1 and on the other hand we evaluate GEI approach
(Baseline 2) described in Section 4.2. In the second
case we evaluate the recognition rate for the two dif-
ferently cropped Gait Energy Images. However, at this
point, the Gait Energy Image could not be calculated
for con�guration 5 and 6, thus there are no results in
those cases.

Results are shown in Table 3. We evaluate the recog-
nition rate for each of the con�gurations separately and
we report overall recognition rates. For all three vari-
ants, we report rank 1, rank 5 and rank 10 recogni-
tion rates. Figure 5 additionally shows the cumulative
matching characteristic (CMC) for the rank n recogni-
tion rates for all three baseline variant.
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Top 1 Top 5 Top 10
BL 1 BL 2a BL 2b BL 1 BL 2a BL 2b BL 1 BL 2a BL 2b

Conf. 1 97.9% 68.6% 77.1% 100% 76.2% 94.3% 100% 85.7% 97.1%
Conf. 2 93.3% 67.1% 75.7% 93.3% 80.7% 94.3% 100% 90.0% 97.8%
Conf. 3 75.0% 11.4% 77.1% 91.7% 45.7% 90.0% 100% 66.4% 94.3%
Conf. 4 20.0% 8.6% 32.9% 60.0% 23.6% 63.6% 73.3% 43.5% 74.3%
All(1-4) 69.9% 36.9% 64.9% 85.2% 55.2% 84.9% 92.6% 70.5% 90.5%
Conf. 5 43.7% - - 60.4% - - 77.1% - -
Conf. 6 70.0% - - 90% - - 100% - -
All(1-6) 65.8% - - 81.9% - - 91.1% - -

Table 3: Results for Baseline 1 (Color Histogram), Baseline 2a (Gait Energy Image) and Baseline 2b (Cropped
Gait Energy Image)

It can be seen that the simple color based recognition
method outperforms the GEI approach. However, the
GEI approach also shows excellent results, and in case
of the cropped GEI, the performance of GEI surpassed
the performance of the color histogram method.

7 CONCLUSIONS
In this paper we have presented a new gait recogni-
tion database, which is focused on the problem of oc-
clusions. Besides addressing the occlusion problem,
the database also addresses three new kinds of vari-
ations which have not yet been addressed by other
datasets. More speci�cally these variations include
hands in pocket, wearing backpack and waring a gown.

We have presented two baseline algorithms which
perform excellent on the given dataset for the case of
no occlusion. However, so far neither of these two al-
gorithms speci�cally addresses the occlusion problem,
resulting in low performance for those cases. Thus it
remains future work of actually utilizing the databases
capabilities to show good performance in spite of oc-
clusions.
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ABSTRACT
This article presents modi�cations to an existing technique for camera orientation estimation intending to make
it faster for use in real time applications and also for analysis of large image sets. The technique is based on
likelihood maximization of a probability function that has the image gradient as the observed data and the camera
orientation as parameter values. The camera orientation is inferred from the vanishing points of the image, and
the directions of the edges in the environment are assumed to be in three mutually orthogonal directions. The �rst
proposed modi�cation is to substitute the expression that is calculated at each pixel by a computationally lighter
approximation. The second proposal is to take in consideration only a few of the pixel lines and columns of the
image during the calculations, performing a grid windowing of the image. This article presents the derivation and
reinterpretation of the likelihood function approximation and also a performance evaluation.

Keywords
Vanishing point, grid masking, camera orientation, camera localization, Bayesian inference, ML estimation.

1. INTRODUCTION
Camera localization is the Computer Vision problem
of inferring the position and orientation of a camera
in an environment from one or more pictures captured
by it. Camera localization problems are de�ned by
their different restrictions, specially the available data
and what parameters are to be estimated. As usual
in Computer Vision, it is an ill-posed problem of
parameter estimation, and solutions are often based
on procedures such as non-linear regression [SW89]
and robust estimation [CKY09, HZ03]. One speci�c
case of the localization problem is to estimate just
the camera orientation from a single image under
the restriction known as �Manhattan World�, or also
�LEGO Land�, that the edges in the environment are
in the directions of the coordinate axes. This article
presents modi�cations to existing techniques [CY03,
DIM02, SD04, DEE08] that solve this problem
using the Likelihood Maximization principle, with a
probabilistic observation model where the observed
data is the image gradient, and the parameters to be

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. To
copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission
and/or a fee.

estimated de�ne the camera orientation in the world
reference frame. Two modi�cations are proposed:
the substitution of the expression calculated at each
pixel by a simpler one, and the use of a grid mask to
select pixels. The alternative expression caused great
speed gains (60 fold in one test) while exhibiting good
convergence. The subsampling technique also caused
a 10 fold speed increase with just a 10% reduction of
convergence probability in another experiment.

The proposed simpli�ed expression can be seen as
the result of a windowing operation by a mask that
is calculated from the image gradient norm using
a sigmoid function. While the original expression
is strictly probabilistic, the proposal is similar to
techniques such as Fuzzy Logic and Neural Networks.

In the remainder of this section the problem is
further described and previous techniques are brie�y
reviewed. In Section 2 the existing techniques on
which this proposal is based are better explained, and
so is the developed technique. This section also brings
results of experiments conducted with a database of
images with solved orientation parameters to evaluate
the proposal. Section 3 brings a few conclusions.

1.1 Problem geometry
The aim of the proposed technique is to obtain an
estimate of the spatial orientation of a camera from
a single image captured by it. The camera follows the
simple pinhole model [TV98, chap. 2][HZ03, chap.
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gradients ~E~u at each pixel ~u. These individual PDF
are also further factored as products of the likelihoods
of the gradient norms E~u and edge angles �~u yielding

P ( ~E~ujm~u; ~	; ~u) = P (E~ujm~u)P (�~ujm~u; ~	; ~u):
(1)

The edge angle �~u is orthogonal to the gradient
direction 6 ~E~u. The formula has two important
characteristics. The �rst is that the PDF of the
gradient norm E~u depends only on the pixel class
m~u. This class can be one of �ve possibilities: class 1
means the pixel is not an edge, classes 2�4 are edges
on each of the three coordinate axes of the world
reference frame and class 5 is a non-aligned edge.

The second characteristic is that the PDF of �~u also
depends on m~u, but also on the camera orientation ~	
and the coordinates of pixel ~u. When m~u = 1 or 5 we
assume all gradient directions are equally probable,
so P (�~ujm~u; ~	; ~u) becomes a uniform distribution
in these cases. For m~u = 2, 3 or 4 we calculate
the probability of the measured direction. For that
we �rst use ~	 to calculate ~rm = (rmx ; rmy ; rmz ), a
vector in the direction of the edges of the class m~u
in the camera reference frame. The location where a
line extended from ~rm crosses the image plane is the
vanishing point. The vector can also be parallel to the
plane, in which case there is no actual vanishing point
but it is still possible to calculate the directions of the
edges. The direction on each pixel is:

~�m~u =
�
rmx
rmz

f + ux;
rmy
rmz

f + uy
�
: (2)

One way to calculate P (�~ujm~u; ~	; ~u) used in
previous techniques is to determine the vanishing
point direction angle 6 ~�m~u , then subtract it from the
edge direction �~u, and this difference is then used
as parameter to the PDF of the observation error in
the measured edge directions. This PDF has been
assumed in previous works to be uniform [CY03],
triangular [DIM02], Gaussian [SD04] and a
Generalized Laplace distribution [DEE08].

Two different PDF are used to implement
P (E~ujm~u). For m~u = 1, Po� (E~u) is used, and
Pon(E~u) is used otherwise. Different assumptions
have been made about these functions too. Both
measured values [CY03, DIM02] and Gaussian
models [SD04] have already been used.

As previously mentioned, the likelihood of the
complete image is a product of terms given by
Equation 1. This product can be used to de�ne a ML
estimator, but what is usually done is to improve it
by using the information of a priori probabilities of
P (m~u), to de�ne a MAP estimator. The logarithm
of the resulting expression is also taken to replace the
product by a summation, what does not change the
location of the maximal points. Considering all this,

and using Mk for P (m~u = k), �k for P (�~ujm~u =
k; ~	; ~u) we arrive at the expression:

L
�
~	
�

=
X

~u

log
�
Po� (E~u)�1M1 + Pon(E~u)�5M5

+ Pon(E~u)
P4
k=2 �kMk

�

(3)

The camera orientation estimate is therefore the
rotation ~	� that maximizes the function L. In the
original proposal the summation is performed over
all the image pixels [CY03], but just like with the
PDF de�nitions, other researchers have proposed
different ways to select subsets of the image pixels
over which the summation should be performed,
hoping to make the calculation faster and also smooth
the estimator function. One proposal is to divide
the image in square tiles, and sample a single
pixel randomly from each one, a different pixel at
each calculation [DIM02]. Another possibility is
to select only a few of the pixels with the largest
values of E~u [SD04]. The probabilistic modeling
of the pixel being or not on an edge can be even
dropped and substituted by the use of an edge-�nding
algorithm [DEE08]. In this case the argument of the
log in Equation 3 becomes simply

P5
k=2 �kMk, but

this technique depends on an initial edge extraction,
that did not exist in the original proposal.

Other aspects where the techniques differ is
the application of the Expectation-Maximization
algorithm, where values for Mk are also
iteratively estimated [SD04, DEE08], and the
optimization algorithms used. Alternatives
range from coarse-to-�ne search at regularly
sampled points [CY03], stochastic importance
sampling [DIM02], and continuous non-linear
optimization methods [SW89] such as
Levenberg-Marquardt [SD04] and BFGS [DEE08].

2.2 Function approximation
This subsection describes the �rst major modi�cation
investigated in this research, which is substituting
the original arithmetical expression for the likelihood
function by a computationally simpler approximation.
The following subsection covers the use of a grid
mask to select the pixels to be considered in the
calculations.

Tests performed with an implementation of the
original likelihood expression (Equation 3) revealed
that much of the computation time was spent
on functions to compute the logarithm and the
arc-tangent used to calculate 6 ~�m~u . A removal
from the program of the procedure calls related to
these operations, while keeping all the rest of the
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calculations, resulted in an approximately ten fold
speed gain, showing experimentally that avoiding
these operations can be a good strategy to reduce the
calculation time. Arc-tangent was the most costly
operation of the three, considering both the time of
a single calculation and the number of calls at each
calculation iteration in the summation loop.

The modi�cations begin by replacing the logarithm
with the �rst-order approximation

log(b+ a) �
a
b

+ log(b); (4)

where a represents the terms that depend on ~	,
and b the terms that remain constant during the
optimization. The log(b) term can therefore be
ignored as it does not in�uence the solution, and the
resulting approximation becomes

X

~u

W 0(E~u)
4X

k=2

�k
Mk

�1 ; (5)

where the mask generating function

W 0(E~u) =
�
Po� (E~u)
Pon(E~u)

M1 +M5
��1

: (6)

The function W 0 produces, at least with the
appropriate parameters, a sigmoid curve, similar to
the logistic or to the hyperbolic tangent functions.
The second approximation used was to replace this
function by W , the logistic function applied to E~u
translated by p1 and scaled by p2

W (E~u) =
�

1 + e�p2(E~u�p1)
��1

: (7)

Replacing W 0 for W at Equation 5 and ignoring the
constantMk=�1, that only scales the function, �nally
produces the proposed estimator:

~L
�
~	
�

=
X

~u

W (E~u)
4X

k=2

�k; (8)

Figure 1 displays, at the top, the probability
models of the gradient magnitudes with measured
values, provided by the authors of [CY03], and also
the Gaussian models from [SD04] (mean 8.28 and
standard deviation 6.21 for Pon , and respectively 1.13
and 0.77 for Po� ). On the bottom of the �gure, the
continuous and dashed curves are W 0 obtained from
the two PDF models mentioned, and the red dotted
curves are W with two different sets of parameters
(p1 = 10 p2 = 0:4 and p1 = 3:1 p2 = 3:0).

Figure 2 shows an image from the YorkUrbanDB
image database [DEE08]. This image set has
102 indoor and outdoor images of man-made
environments, and the orientation of each image was

Figure 1: Original gradient magnitude likelihood
functions, resulting mask generating functions and
examples of the proposed function.

obtained from edges and with a manual labeling
process. Intrinsic parameters of the camera are also
provided, enabling interested researchers to test their
techniques and compare to others. Possible radial
distortions of the images were not taken in account
in this work, but the projection center coordinates and
focal distance that are provided were used.

The leftmost graphic of the �gure displays the
input image. The next one displays the values of W
calculated over each pixel, with white representing
the zero level, (p1 = 20 and p2 = 0:2 were used).
The two graphics to the right display the horizontal
and vertical components of the normalized direction
vector. The red color denotes negative values, but
even in a monochromatic mode it is possible to see
how edges in the direction of the derivative vanish on
each graphic. The edge mask obtained with W has
been applied to these gradient images, clearing out the
noise that would be otherwise noticeable in the large
white areas of these images.

In the program created to implement this expression
the edge mask is calculated and stored in memory
before the optimization procedure starts, so only
memory accesses are needed to obtain the values
during the calculations. Something similar can be
done with other techniques, because P (E~ujm) does
not depend on 	, only �m does.

The last modi�cation done to the likelihood
expression was to substitute the calculations of
arc-tangents by dot products. Instead of calculating
the angles of the gradient and vanishing point
directions, these vectors are simply normalized and
multiplied by each other. Because the gradient is
orthogonal to the edge direction, this multiplication
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Figure 2: Gradient of an YorkUrbanDB image. The second image is the edge mask calculated from the gradient
vectors absolute values. The two rightmost graphics are the masked gradient x and y components.

yields 
m = sin(�~u � 6 ~�m~u ). This is a good
approximation of the identity function for small
values, so the product result can be directly used in
the angle error PDF. The function used was therefore:

�m =

(
2
p3

�
1� j


mj
p3

�
if j
mj < p3

0 if j
mj � p3
; (9)

where we note that the 2=p3 multiplication can be
dismissed without affecting the optimization results.

The normalization of ~E~u and 6 ~�m~u can be
performed quickly using a special rsqrt instruction
available in many modern processors that calculates
an approximation of the reciprocal of the square
root of numbers. This instruction was used in the
implementation tested, and so were SIMD (single
instruction, multiple data) instructions that allow
calculations to be performed simultaneously both for
the three vanishing points, and also for the three image
channels when possible. The three image channels
were independently considered in the calculations,
with just the pixel coordinates and ~�~u in common. The
�nal likelihood value is therefore the summation of
likelihoods for each channel.

The program was implemented using
Cython [Sel09], with a few routines implemented
in C in order to make use of the special processor
instructions mentioned. Another implementation
was made based on [CY03], using arc-tangent
and logarithm calls inside the loop, but with some
similarities to the implementation of the proposal,
such as using SIMD instructions for some operations,
and caching constant values.

Tests were performed with the YorkUrbanDB
images at different values of 	 to measure the
speed of the proposed function relative to this
implementation of the original. Speed gains
from 50 up to 64 times were found in one
computer (c1.xlarge instance from Amazon Web
Services [Ser]), where the mean time to calculate the
likelihood of one image using the classic function was
1:10 � 0:06s versus 18:9 � 2:4ms for the proposed
algorithm. Although these numbers naturally varied

according to the processor employed, accelerations of
more than 10 times were often detected in other tests.

The positive impact of these function modi�cations
on the calculation speed is not surprising. But the
impact of these modi�cations on the performance of
the optimization procedure must be now studied to
validate the proposed technique. This analysis will
be presented in Subsection 2.4. But it should be
noted that this proposed modi�cation did not intend
to numerically approximate the original likelihood
function values. The original function serves more
as a theoretical foundation, and the modi�cations do
not seek to approximate it exactly, but only retain
characteristics such as the positions of the extremal
points and gradient directions.

When the logarithm of the likelihood is used
instead of the original function in an optimization, the
produced function does not approximate the original
numerically, but is still useful for the optimization.
So the performance of such modi�cations should
not be measured by looking at approximations
errors, but at the optimization results instead. In
the same way, because the modi�cations proposed
here include dropping some constant terms, the
resulting function cannot be compared to the original
function, so no error analysis was performed, only
performance analysis of the optimization procedure.
Despite of that, the modi�cations are in fact initially
based on �rst-order approximations of the original
function, justifying the use of the term approximation,
even though the �nal proposed function does not
approximate the original one numerically.

The proposed function also differs from the original
in that the parameters of the mask generating function
are only indirectly related to the gradient norm
probabilities. While it is possible to �t the parameters
to a mask function taken from histograms, it is better
to look for parameters that maximize the performance
of the �nal optimization procedure. The sensitivity of
the performance to these parameters, and also to the
gradient norm probabilities is a topic that the proposed
modi�cations bring up, but was not studied here.
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must be set in order to use the technique are the ones
related to the optimization.

A grid masking technique was also proposed to
select a subset of the image pixels to take in
consideration in the calculations. It was inspired in
the usual curve tracking technique of searching for
edges over spaced lines normal to an initial estimate
of the curve location[BI98, chap.5 ], and also on
the Canny edge extractor [TV98]. It subsamples the
image in a deterministic and more reliable way, and
has been proven effective.

Some planned extensions to this research are to
better choose the function parameter values and turn
the grid masking into a search of maximal points of
the derivative in the direction of the line or column.
The gradient calculations can also be restricted to
the grid vicinity to speed up calculations. Other
subsampling techniques can also be applied together
with a grid mask. For example, random sampling
could be performed only within the mask pixels,
or a random sampling could be performed in the
whole image initially, but instead of picking just a
single pixel from each trial, picking a whole group of
pixels inside a cross or square mask centered at each
generated pixel.

This fast orientation estimation algorithm is
planned to be used in real time to track the orientation
of a camera with a Kalman �lter or a similar
technique. An attempt will be made to reuse the
data remaining from the grid masking to also extract
edges. The resulting edge observations will be fed to
a monocular simultaneous localization and mapping
(SLAM) system [NDL08] that exploits the restrictions
on the edge directions.
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