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Abstract. For certain scattering geometries collective Thomson scattering (CTS)
measurements are sensitive to the composition of magnetically con�ned fusion plasmas.
CTS therefore holds the potential to become a new diagnosticfor measurements of the
fuel ion ratio { i.e., the tritium to deuterium density ratio . Measurements of the fuel ion
ratio will be important for plasma control and machine protection in future experiments
with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio
measurements by CTS. We show that the sensitivity to plasma composition is enhanced
by the signatures of ion cyclotron motion and ion Bernstein waves which appear for
scattering geometries with resolved wave vectors near perpendicular to the magnetic
�eld. We investigate the origin and properties of these features in CTS spectra and
give estimates of their relative importance for fuel ion ratio measurements.
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1. Introduction

In this paper we examine the theoretical basis for the use of collective Thomson
scattering (CTS) to diagnose the density ratio between the fuel ion species in a
magnetically con�ned fusion plasma. This so-called fuel ion ratio is of general scienti�c
interest for fusion plasma experiments. The fuel ion ratio will further be a key parameter
for machine protection and basic plasma control on next-step devices such as ITER
where plasmas with signi�cant fusion power are expected [1]. However, it is not clear if
the fuel ion ratio can be determined in the plasma center (� < 0:3) with the diagnostic
set currently included in the ITER baseline design. Therefore additional approaches are
desired [1,2]. Microwave-based CTS diagnostics are well suited for reactor environments
and provide access to the dynamics of con�ned ion populations by measuring the
spectrum of probe radiation scattered by plasma uctuations. The scattered radiation
is picked up by a receiving antenna and the measurement is localized at the intersection
of the probe and receiver beams. CTS diagnostics were originally developed to diagnose
bulk plasma parameters such as ion temperatures [3{6], and they have since been applied
to measurements of the velocity distributions of non-thermal energetic ion populations
at JET, TEXTOR and ASDEX Upgrade [7{13]. For certain scatteringgeometries, CTS
spectra also contain features which are highly sensitive toplasma composition [14]. It
has been suggested [15,16] that measurements of these features could form the basis for
a new fuel ion ratio diagnostic.

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

200

nd/n
cH

S
pe

ct
ra

l p
ow

er
 d

en
si

ty
 [e

V
]

f =93°,  n
H

 =  n
D

/10

f =93°,   n
H

 = n
D

f =100°, n
H

 = n
D

(a)

0 2 4 6 8 10 12
-100

-50

0

50

nd/n
cH

d(
dP

s/d
ns )/

dR
H

   
 [e

V
]

f =93°

f =100°

(b)

Figure 1. (a) Numerically calculated spectral power densities for di�erent scattering
geometries and plasma compositions. (b) Numerically calculated derivatives of the
spectral power density with respect to the density ratio RH = nH =(nH + nD ). Plasma
parameters and frequencies correspond to the plasma scenario de�ned in Appendix
A. � � is the frequency shift of the scattered radiation, and the frequency scale is
normalized by the hydrogen ion cyclotron frequency. For� near 90� the spectra show
cyclotron structure which is highly sensitive to plasma composition. When � is not
close to 90� (i.e., more than a few degrees away from 90� ) the structure disappears
and the spectrum is less sensitive to plasma composition.
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Figure 1 illustrates the basic idea. Figure 1a shows numerically calculated spectral
power densities for frequencies and plasma parameters relevant to CTS experiments at
TEXTOR. The model used to calculate these spectra will be discussed in detail in the
following sections. The shape of the curves changes considerably if either the fuel ion
ratio or the angle � = \ (k � ; B (0) ) resolved by the measurement is varied, keeping all
other parameters constant. Herek � is the plasma uctuation wave vector resolved by the
measurement, andB (0) is the local magnetic �eld. When� is close to 90� , the received
radiation results from scattering of incident radiation o� plasma uctuations traveling
almost perpendicularly to the magnetic �eld. For such scattering geometries peaks
appear in the spectrum at intervals corresponding roughly to the cyclotron frequencies
of the most common ions in the plasma { which were here taken tobe hydrogen and
deuterium. Thus, we note two sets of peaks in the spectra: oneset which appears near
hydrogen cyclotron harmonics and another set which appearsnear deuterium cyclotron
harmonics for high deuterium density. When� is more than a few degrees away from
90� the peaks disappear, and the spectrum is less sensitive to plasma composition.

In CTS the incident probe radiation scatters o� plasma uctuations which are
driven mainly by the thermal motion of ions in the plasma (externally driven uctuations
will not be considered here). In the following sections we shall see that the driving
terms for these uctuations contain an underlying cyclotron structure with contributions
from each harmonic of the cyclotron motion of charged particles in the plasma. For
uctuations with wave vectors nearly perpendicular to the magnetic �eld, � � 90� ,
the ion cyclotron motion dominates the driving terms which are strongly enhanced at
frequencies coinciding with harmonics of the ion cyclotronfrequency (or frequencies,
in plasmas with multiple ion species). Plasma uctuations result from the dielectric
response of the plasma to the e�ects of the ion motion described by the driving terms.
This response is particularly strong at frequencies and wave vectors corresponding
to weakly damped plasma waves. In particular, weakly dampedion Bernstein waves
strongly a�ect the spectrum of uctuations with wave vectors nearly perpendicular to
the magnetic �eld. The ion Bernstein waves have frequencieswhich lie between and
often close to harmonics of the ion cyclotron frequencies, and the waves cause peaks in
the uctuation spectrum at these frequencies. The combinede�ect of the enhanced drive
and plasma response at speci�c { but di�erent { frequencies can be seen in the spectra
in �gure 1 for which � is close to 90� . As noted above, these spectra contain peaks at
frequencies close to the ion cyclotron harmonics. We refer to the peaks originating from
this combined e�ect as ion cyclotron structure in the CTS spectrum.

Figure 1b shows the numerically calculated derivative of the spectral power density
with respect to the density ratio RH = nH=(nH + nD ). The large-scale shapes of the
spectra are determined mainly by the velocity distributionof the plasma ions. For
increasingRH the spectrum will broaden due to the higher thermal velocityof hydrogen
ions relative to deuterium ions (assuming thermal equilibrium between the two ion
species). The derivative with respect toRH is therefore negative for small frequency
shift and positive for large frequency shift as �gure 1 illustrates. When � is close to 90�
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the ion cyclotron structure creates additional detailed structures in the derivative. In
particular, the amplitude of the cyclotron structures { the peak amplitude accounting
for the general slope of the spectrum { is highly sensitive toplasma composition. The
widths and center frequencies of the peaks are also sensitive to RH , and in general the
presence of the cyclotron structure strongly enhances the sensitivity of the spectrum to
plasma composition. In addition, the higher level of detailin the derivative with respect
to RH has the e�ect that degeneracies of the functional dependence of the spectrum on
plasma composition with the functional dependence on otherplasma parameters can
be resolved when� is near 90� . It is this strong and detailed sensitivity which allows
inference of the fuel ion ratio from a measured spectrum.

Indeed, previous feasibility studies [16] have found that such a diagnostic could
ful�ll the measurement requirements for ITER and that it could be combined with
the CTS system foreseen to measure fast ion velocity distributions on ITER [17{19].
In preparation for proof-of-principle experiments the CTSreceiver at TEXTOR was
recently modi�ed for measurements with frequency resolution better than 1 MHz [20] {
as would be required to demonstrate the ability to resolve cyclotron structure in CTS
spectra. The �rst measurements with the modi�ed receiver demonstrating the ability
to resolve ion cyclotron structure in the CTS spectrum were reported in [14]. The same
series of experiments further demonstrated the sensitivity of the ion cyclotron structure
to plasma composition with measurements taken in plasmas dominated by hydrogen,
deuterium and 3He, respectively.

In this paper we examine the origin of cyclotron structure inCTS spectra
theoretically. We illustrate our results with numerical examples, and to ensure the
relevance of our numerical work to experiments possible on present machines, the
examples are based on plasma parameters relevant to the CTS experiments at TEXTOR.
For use in this paper we therefore de�ne a standard plasma scenario relevant to CTS
experiments at TEXTOR. The parameters for this scenario are given in Appendix A,
and we use these parameters in all numerical calculations except where changes are
explicitly noted in the text or in �gure captions. In this scenario we consider plasmas
consisting of fully ionized hydrogen and deuterium, and we investigate the sensitivity
of the spectrum to the hydrogen to deuterium density ratioRH = nH=(nD + nH). The
sensitivity of the spectrum toRH is entirely analogous to the sensitivity to the fuel ion
ratio in a DT-plasma and we can useRH as a proxy for the fuel ion ratio with no loss
of generality.

Section 2 gives an outline of the model used in the numerical calculations. In
Sections. 3 and 4 we show that the ion cyclotron structure results partly from the
direct inuence of ion cyclotron motion on the driving termsfor the plasma uctuations
and partly from the inuence of weakly damped ion Bernstein waves on the thermal
uctuation spectrum. In section 5 we examine the relative importance of the two e�ects
in the total spectrum for the purpose of fuel ion ratio diagnostics. Here we �nd that
both e�ects are generally present in CTS spectra with� � 90� and that for certain
parameter ranges both e�ects are required for accurate determination of the fuel ion
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ratio.

2. Kinetic model of collective Thomson Scattering

In CTS measurements an incident macroscopic probing wave with wave vector and
angular frequency (k i ; ! i) interacts with microscopic thermal uctuations in the plasma
with wave vector and frequency (k � ; ! � ). The interaction sets up a current which
in turn drives a third wave, the scattered wave with wave vector and frequency
(ks = k i + k � ; ! s = ! i + ! � ). When detected, the scattered wave allows inference of
plasma properties which a�ect the thermal uctuations that caused the scattering. In
this paper the scattering process will be described using the model developed in [21{24].
The scattering process is treated in a fully electromagnetic approach assuming that
the plasma response can be considered cold at the frequencies and wave vectors of the
incident and scattered waves and that e�ects of collisions are negligible. The treatment
of the uctuations assumes a homogeneous plasma, but no further assumptions are made
about the nature of the uctuations which are described in a fully kinetic approach. The
model is therefore not limited to cold collective uctuations, and it will include the e�ects
of warm plasma uctuations such as ion Bernstein waves whichenter the spectrum when
the resolved uctuation wave vector is near perpendicular to the main magnetic �eld
in the plasma. In [23] it is demonstrated that for� � 90� scattering from uctuations
in quantities other than the electron density, as well as therelative phase of these
components, may play a signi�cant role. For such geometriesa fully electromagnetic
approach is therefore generally required to describe the scattering process.

Using the compact formulation given in [23] the received spectral power density is
given byz

@Ps

@!s
= P iOb(� i

0)2r 2
e

1
2�

X

a

� (a) ; with a = electrons, ion species (1)

� (a) =
X

��

� (a)
�� ; with �; � = E; B; j; n: (2)

Here � (a)
�� is the scattering function for plasma uctuations in the �eld and uid variables

(� , � ) driven by the thermal motion of particle speciesa. The indices� and � represent
the uctuating quantities which are relevant to the scattering process, namely, the
electron density,n, and the electron current,j , as well as the electric and magnetic �elds.
For simplicity n and j do not carry a superscript indicating particle species whenused
in this capacity. P i is the power in the incident probing beam,Ob is the beam overlap,
� i

0 = ! i=c is the vacuum wavelength of the probing radiation, andre = q2
e=4�� 0mec2 is

the classical electron radius. The beam overlap is de�ned asthe volume integral over
the product of the normalized probe and receiver beam intensities. The beam intensities

z Note that these expressions are di�erent from those in [23] in two respects: The front factor in
equation (1) is not proportional to the unperturbed density (which is contained in � (a) ) and the
summation over particle species is made explicit.
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will usually be Gaussian, but some insight can be gained by noting that for uniform
beam intensities and perfect intersection the beam overlapis given by the ratio of the
scattering volume to the product of the beam cross-sectional areas,Ob ' V=AiAs. Due
to refraction Ob will have some minor frequency dependence which is ignored here. The
spectral variation of the received scattered power is contained in the scattering functions
which are given by

� (a)
�� =

(! i ! s)2

! 4
pe

1
L iL s

Ĝ (� )
i h~� (a)

i
~� (a)

j i Ĝ (� ) �

j (3)

Here ! pe is the electron plasma frequency, andL i and L s are the normalized uxes
of the incident and scattered radiation, respectively. Summation of repeated lower
indices is implied. An overhead tilde indicates thermal uctuation levels, so for
instance ~B = B M � B where B M is the magnetic �eld of the microscopic plasma
state and B = hB M i is the macroscopic magnetic �eld given by the ensemble average
of microscopic states. The coordinate system is de�ned suchthat B = Bẑ and
k � = k�

k ẑ + k�
? x̂ .

The dielectric coupling operators,Ĝ (� )
i , describe interaction of the incident wave

with uctuations in the set of �eld and uid variables f E i ; B i ; j i ; ng and the coupling to
the scattered wave. Explicit expressions for the normalized uxes and dielectric coupling
operators are derived in [21, 22] and given in a compact notation in [23], and they will
not be reproduced here. While these factors are of great importance for the scattering
theory, they impart little spectral variation, and therefore little sensitivity to plasma
composition, to the received scattered power. Rather, our attention shall be focused on
the Fourier transform of the correlation of uctuations in the �eld and uid quantities,
h~� (a)

i
~� (a)

j i , which contains most of the sensitivity to plasma composition. We shall give
expressions for these terms below, but for details of their derivation we refer to [23,24].

In the dressed particle approachh~� (a)
i

~� (a)
j i can be calculated as the product between

the correlation tensor for unscreened current uctuationsin particle speciesa, h~j (a0)~j (a0) i ,
and the corresponding uctuation operators,

h~� (a)
i

~� (a)
j i = Ŝ(� a)

ik h~j (a0)
k

~j (a0)
l i Ŝ(� a)�

jl : (4)

Here the uctuation operators, Ŝ(� a)
ik , quantify the plasma response, ~� (a)

i , in the quantity
� to unscreened current uctuations in particle speciesa,

~� i =
X

a

~� (a)
i with ~� (a)

i = Ŝ(� a)
ik

~j (a0)
k : (5)

The uctuation operators may be derived from the plasma waveequation, and explicit
expressions for each operator will be given in section. 4. The unscreened current
correlation tensor is given by

h~j (a0)
k

~j (a0)
k0 i = q2

a

Z
vkvk0h~f (a0) (p) ~f (a0) (p0)i dpdp0: (6)

where h~f (a0) (p) ~f (a0) (p0)i is the spatial and temporal Fourier transform of the two
time correlation h~f (a0) (x; t ) ~f (a0) (x0; t0)i and qa is the charge of speciesa. Here
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~f (a) = ~f (a0) + ~f (a1) , where ~f (a0) represents the evolution of the microscopic distribution
function ~f (a) in the absence of particle interactions and~f (a1) represents the dielectric
response of the plasma to the microscopic �elds (~E; ~B) set up by the unscreened
particle motion. Similarly, h~� (a)

i
~� (a)

j i represents the plasma dielectric response to the
free streaming particle motion described by the unscreenedcurrent correlation tensor
h~j (a0)~j (a0) i . To give an example,h~n(H) ~n(H) i describes uctuations in the electron density
due to electron screening of hydrogen ions moving through the plasma.

The unscreened current correlation tensor,h~j (a0)~j (a0) i , can be expressed in terms of
the unperturbed macroscopic distribution function [23,24]

h~j (a0)~j (a0) i = (2 � )2 maq2
a

jkkj

Z
dp? p?

1X

l= �1

clc�
l f (a0)(p? ; pk) (7)

where

cl =

8
><

>:

l! ca
k?

Jl (k? � a)
� iv? J 0

l (k? � a)
vkJl (k? � a)

9
>=

>;
; vk =

! � l! ca

kk
=

pk

ma
(8)

and Jl are Bessel functions of the �rst kind of orderl , primes indicate derivatives,
! ca = qaB (0) =ma is the cyclotron frequency and� a = v? =! ca is the Larmor radius.

Below we shall see that for scattering geometries where the resolved uctuation wave
vector is nearly perpendicular to the unperturbed magnetic�eld, � = \ (B (0) ; k � ) � 90� ,
both h~j (a0)~j (a0) i and the uctuation operators contain cyclotron structureswhich enhance
the sensitivity of the total spectrum to plasma composition{ as well as to certain other
parameters such as the ion temperature. In the following sections we examine the origin
and properties of the cyclotron structure in each term and then evaluate their relative
importance for the total spectrum.

3. Signatures of ion cyclotron motion in the unscreened curr ent correlation
tensor

Assuming the unperturbed momentum distribution for particle speciesa to be an
isotropic Maxwellian { the only case to be considered here { with temperature Ta and
particle density n(a0)

f (a0) (p? ; pk) =
n(a0)

(2�m aTa)3=2
exp

(

�
p2

? + p2
k

2maTa

)

(9)

the unscreened current correlation tensor, equation (7), becomes

h~j (a0)~j (a0) i (k; ! ) =
(2� )2q2

an(a0)ma

(2�m aTa)3=2jkkj

1X

l= �1

exp
�

� � 2
l

	
M (l ) (10)

M (l ) =
Z

dp? p? clc�
l exp

�
�

p2
?

2maTa

�
(11)
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Figure 2. The h~j (H0)
y ~j (H0)

y i (a) and h~j (D0)
y ~j (D0)

y i (b) elements of the unscreened
current correlation tensor for di�erent values of � = \ (B ; k � ). The frequency scale is
normalized by the hydrogen cyclotron frequency.h~j (i0) ~j (i0) i is even in � � for isotropic
momentum distributions, so the elements are shown only for positive � � . For � close
to 90� peaks develop at each harmonic of the ion cyclotron frequency and for � ! 90�

these elements go to zero except at the cyclotron harmonics.

with

� l =
r

ma

2Ta

�
! � l! ca

kk

�
=

vk

vta
; vta =

p
2Ta=ma : (12)

The momentum integrals inM (l ) can be solved analytically, and the sums overl can
be evaluated numerically by Clenshaw's method. Below, we shall examine numerical
results for some elements inh~j (i0)~j (i0) i , but the explicit forms will not be listed except for
the h~j (i0)

x ~j (i0)
x i element. We use the superscripti to indicate any ion species, and below

we shall useI to indicate a sum over all ion species. We further note that while the
diagonal elements ofh~j (a0)~j (a0) i are real, the o�-diagonal elements are in general complex
quantities. However, � (a)

�� is Hermitian when considered as a matrix with indices (�; � ),

so the sums �(a)
�� + � (a)

�� are real. For simplicity we shall here restrict ourselves to
examining the diagonal elements which are usually the dominant terms. This approach
is useful to gain insight in the behavior of the unscreened current correlation tensor, but
in calculations of the total scattering spectra we use the full expressions with all terms
included.

Figure 2 shows examples of numerically calculated elementsof h~j (H0)~j (H0) i and
h~j (D0) ~j (D0) i for di�erent values of � and for parameters corresponding to the standard
scenario de�ned in Appendix A. When the resolved uctuation wave vector component
is nearly perpendicular to the magnetic �eld (i.e., in the limit where � ! 90� , kk ! 0 and
k? ! k), the argument of the exponential function in equation (10)goes to negative
in�nity except at (or near) frequencies coinciding with a cyclotron harmonic where
! = l! ca so� l = 0. Here we are interested in the ion dynamics and plasma composition,
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so we focus our attention on the ion cyclotron range of frequencies and will not consider
what happens near electron cyclotron harmonics. At each ioncyclotron harmonic,
! ci, there will be one term for which the exponential function inthe sum over l in
equation (10) is unity. The elements ofh~j (i0)~j (i0) i in which the z-element ofcl is not
involved then diverge due to thejkkj � 1 dependence in the front factor of equation (10).
At other frequencies all terms in the sum overl will be suppressed by the exponential
function. Thus

lim
� ! 90�

h~j (i0)
k

~j (i0)
k0 i =

(
1 for ! = n! ci

0 for ! 6= n! ci
n 2 Z; k; k0 = x; y (13)

This behavior is seen in �gure 2 as the gradual emergence at each ion cyclotron harmonic
of peaks with increasing amplitude and decreasing width for� ! 90� until �nally these
elements ofh~j (i0)~j (i0) i consists of a series of delta function-like spikes (though note that
such a spectrum is not obtained experimentally because the inuence of collisions will
ensure that the peaks reduce to a Lorentzian form [25]). These peaks are the signatures
of ion cyclotron motion and will be referred to as ICM signatures. As seen in �gure 2
the frequency separation between ICM signatures inh~j (D0) ~j (D0) i is half that of h~j (H0)~j (H0) i
corresponding to the ratio between the ion cyclotron frequencies for the two ion species.
In this limit the shape of h~j (i0)~j (i0) i therefore depends strongly on the cyclotron frequency
for the ion species in question. Figure 2 shows theyy-elements ofh~j (i0)~j (i0) i . Qualitatively
similar behaviors are found for thexx-element, which will be examined in detail below,
and for the o�-diagonal elements, which will not be examinedin detail.

In the opposite case, at values of� far from 90� , each term in the sum over cyclotron
harmonics contributes to the sum over a wide range of frequencies roughly centered
around the cyclotron harmonic. The structure created inh~j (i0)~j (i0) i by the individual
terms is then smeared out by contributions from other terms leaving the total spectrum
with no noticeable signatures of ion cyclotron motion. The shape of h~j (i0)~j (i0) i then
depends mainly on the thermal velocity of the ion species.

The behavior of elements inh~j (i0)~j (i0) i which involve the z-element ofcl is somewhat
di�erent because the z-element ofcl is proportional to vk and vk = 0 at the ion cyclotron
harmonics (see equation (8)). In the limit� ! 90� these elements therefore go to zero
even at the cyclotron harmonics. This behavior is illustrated in �gure 3 which shows
h~j (H0)

z ~j (H0)
z i for � close to 90� and the total h~j (I0)

z ~j (I0)
z i element in a narrow frequency range

around an ion cyclotron harmonic. When� is very close to 90� we �nd a double peaked
structure in the vicinity of the ion cyclotron harmonic. This double peaked structure
can be understood as a single peak centered on each cyclotronfrequency, but with a
hollow center due to the z-element ofcl . At intermediate values of � the structures
broaden and eventually merge to form a single peak between the cyclotron harmonics.

For diagnostic purposes it is noteworthy that the ion cyclotron features inh~j (i0)~j (i0) i
are highly sensitive to the strength and direction of the magnetic �eld as well as the ion
thermal velocity. They also provide increased sensitivityto the plasma composition for
scattering geometries where the cyclotron features are noticeable. Figure 4 illustrates
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Figure 3. The h~j (H0)
z ~j (H0)

z i element (a) and the total h~j (I0)
z ~j (I0)

z i = h~j (H0)
z ~j (H0)

z i +
h~j (D0)

z ~j (D0)
z i element (b) of the unscreened current correlation tensor for di�erent

values of � = \ (B ; k � ). The frequency scale is normalized by the hydrogen cyclotron
frequency, and (b) is focused around a single hydrogen cyclotron harmonic. A double
peaked structures is found for� very close to 90� . The structure broadens for angles
further from perpendicular and at � = 92 � the peaks have merged to form a single
peak between cyclotron harmonics.

this sensitivity with elements of h~j (I0) ~j (I0) i calculated at di�erent compositions and
geometries and with contributions toh~j (I0) ~j (I0) i from di�erent ion species. We shall
discuss the origins and properties of this sensitivity as well as some limitations to its
usefulness for diagnostics purposes.

Contributions to h~j (I0) ~j (I0) i are linearly proportional to the density of each ion species
through the front factor in equation (10), but their shapes do not depend directly on the
ion densities. For given wave vectors and magnetic �eld strength, the shape ofh~j (i0)~j (i0) i
depends on the ion cyclotron frequency (i.e., the charge to mass ratio) and the ion
thermal velocity (i.e., the mass and temperature of each ionspecies). If two ion species
have the same density, thermal velocity and cyclotron frequency (i.e.,T1=m1 = T2=m2

and q1=m1 = q2=m2) their contributions to h~j (I0) ~j (I0) i will di�er only by a constant factor
q2

1=q2
2. In this case, variations in the density ratio result only inscaling ofh~j (I0) ~j (I0) i .

This is not useful for diagnostic purposes since such a scaling will be degenerate with a
number of other experimental parameters (most notably the power in the probing beam
and the quality of the beam overlap). However, in the more common situation that the
ion thermal velocities are unequal this degeneracy is broken and the shape ofh~j (I0) ~j (I0) i
will be sensitive to plasma composition. If the ions are in thermal equilibrium the
shapes of contributions from ions with di�erent masses willdi�er because the thermal
velocities of heavier ions are lower resulting in more narrow contributions to h~j (I0) ~j (I0) i
and vice versa for lighter ions. This type of sensitivity to plasma composition does not
depend on the presence of ICM signatures, and it provides theCTS spectrum with a
weak sensitivity to the fuel ion ratio even for� far from 90� .



Principles of fuel ion ratio measurements by CTS 11

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-16

nd/n
cH

R
eá

j y(I
0)

j y(I
0)

ñ 
 [C

2  s
-1

 m
-1

]

f =93°,  n
H

=H
D

f =93°,  n
H

=H
D

/10

f =100°, n
H

=H
D

f =100°, n
H

=H
D

/10

(a)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-16

nd/n
cH

R
eá

j x(i0
) j x(i0

) ñ 
 [C

2  s
-1

 m
-1

]

Helium
Hydrogen
Deuterium
Tritium

(b)

Figure 4. (a) Total h~j (I0)
y ~j (I0)

y i elements for the standard plasma scenario, but with
di�erent density ratios for hydrogen and deuterium and at di �erent values of � . (b) The
h~j (i0)

x ~j (i0)
x i elements for helium, hydrogen, deuterium and tritium. Plasma parameters

as in the standard scenario but with ne = 5 � 10� 19 m� 3, nHe = nH = nD = nT =
1 � 10� 19 m� 3 and assuming thermal equilibrium.

The ICM signatures provide additional sensitivity to the plasma composition
through their amplitude and the frequencies at which they occur. For ion species with
equal cyclotron frequencies the center frequencies of the ICM signatures coincide, and
it is not possible to distinguish ions by the frequencies at which they create cyclotron
features. However, the amplitudes and widths of the peaks aresensitive to the ion
thermal velocity. In thermal equilibrium ions with di�erent masses will therefore {
in addition to the di�erent underlying widths of their contr ibutions to h~j (I0) ~j (I0) i {
create ICM signatures with di�erent amplitudes. When the ions have di�erent cyclotron
frequencies the ICM signatures increase the sensitivity toplasma composition even more.
The ions then create ICM signatures inh~j (I0) ~j (I0) i at their individual cyclotron harmonics,
and the relative height of these features provides information on the relative densities.
For example, in a plasma consisting of hydrogen and deuterium (! cD = ! cH=2) there
will be two sets of ICM signatures: one set with contributions from both hydrogen
and deuterium at the frequencies where their harmonics coincide and one set resulting
only from deuterium contributions. Thus, in �gure 4a, ICM signatures resulting from
deuterium alone can be seen between the features resulting from both hydrogen and
deuterium { but only for low hydrogen ion density. At higher hydrogen densities
h~j (I0) ~j (I0) i is dominated by the hydrogen contribution, and this decreases the sensitivity
to plasma composition.

Thus, �gure 4 also shows an example of how ions which create strong currents and
strong cyclotron features will tend to dominate the totalh~j (I0) ~j (I0) i even at relatively
low densities. This a�ects the sensitivity to plasma composition: ions which create
strong currents and cyclotron features can be detected evenat low concentrations, but



Principles of fuel ion ratio measurements by CTS 12

conversely they may also dominate the spectrum at high concentrations and render it
less sensitive to the plasma composition. Figure 4b shows contributions to h~j (I0)

x ~j (I0)
x i

from hydrogen, deuterium, tritium and helium. Hydrogen contributions are larger and
have stronger cyclotron features than deuterium contributions which are in turn larger
and have stronger cyclotron features than tritium contributions. However, the three
hydrogen isotopes all give smaller contributions and weaker cyclotron features than
helium. We can understand these properties from the explicit expressions forh~j (i0)~j (i0) i ,
and sinceh~j (i0)

x ~j (i0)
x i has the simplest analytic expression we shall consider thiselement

in some detail. Carrying out the momentum integral in equation (11) and inserting in
equation (10) we �nd

h~j (i0)
x

~j (i0)
x i (k; ! ) =

2
p

�q 2
i n(i0)

vti jkkj

�
! ci

k?

� 2

�
1X

l= �1

l2 exp (� � 2
l � k2

? � 2
i )I l (k2

? � 2
i )

(14)

For the parameter ranges considered herek2
? � 2

i > 20 in the ion terms. In this case
we can, to good accuracy, approximate the modi�ed Bessel functions by I � (x) !
ex=

p
(2�x ); x � 1; � for the lower values ofl . At low frequency shifts the higher

harmonics contribute very little since the modi�ed Bessel functions decay rapidly with
increasingl. For low frequency shifts and using� 2

i = v2
ti =2! 2

ci we then get

h~j (i0)
x

~j (i0)
x i (k; ! ) �=

2q2
i n(i0)

v2
ti jkkj

�
! ci

jk? j

� 3

�
1X

l= �1

l2 exp (� � 2
l )

=
q5

i (B (0) )3n(i0)

m2
i Ti jkkj j k? j3

�
1X

l= �1

l2 exp (� � 2
l )

(15)

We can recognize some of the trends seen in �gure 4 in the frontfactor of equation (15).
Assuming thermal equilibrium, isotopes with larger mass will generally give lower
contributions to h~j (I0) ~j (I0) i and ions with higher charge will give larger contributions.
The precise relations depend on the ions involved. The frontfactor for deuterium will
be four times smaller than that for hydrogen. On the other hand, the front factor for
helium will be two times greater than that for hydrogen due tothe greater charge.

In the limit � ! 90� the exponential function in the sum overl will vary between
unity at the cyclotron harmonics and zero everywhere else { as was discussed previously.
The amplitude of the ICM signatures, which arise for� � 90� , depends on how small
the exponential function can be between the cyclotron harmonics (the maximum value,
attained at the cyclotron harmonics, is always unity regardless of plasma parameters).
The minima of h~j (i0)

x ~j (i0)
x i are found at frequencies roughly halfway between cyclotron

harmonics. At each of these minima the argument of the exponential function in the
two leading terms in the sum overl will be approximately

� 2
l =

mi

2Ti

�
! ci

2kk

� 2

=
q2

i B 2

8miTik2
k

: (16)
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The greater � 2
l is at the minima, the deeper the minima will be, and the greater the

amplitude of the ICM signatures. So { as is also seen in �gure 4{ assuming thermal
equilibrium, isotopes with higher mass give cyclotron features with lower amplitudes.
For constant charge to mass ratio the amplitude increases with increasing charge as is
seen in �gure 4 when comparing helium and deuterium.

4. Signatures of ion Bernstein waves in the uctuation opera tors

The uctuation operators quantify the plasmas dielectric response to current
uctuations driven by unscreened test particles moving along characteristics, ~� (a)

i =
Ŝ(� a)

ik
~j (a0)

k . To give an example,̂S(Ee)
xz gives the electric �eld uctuation in the x-direction

resulting from an electron current density uctuation in the z-direction. The uctuation
operators are derived in [23] and are given by

Ŝ(Ea)
ik =

� i
!� 0

� � 1
ik ; Ŝ(Ba)

ik =
� ik
! 2� 0

� ijl k̂j � � 1
lk

Ŝ(ji)
ik = � � (e)

ij � � 1
jk ; Ŝ(je)

ik = Ŝ(ji)
ik + � ik

Ŝ(na)
k =

ki

!q e
Ŝ(ja)

ik

(17)

where

� ij = � ij + N 2[k̂i k̂j � � ij ] ; � ij = � ij +
X

a

� (a)
ij (18)

is the plasma wave tensor and� (a)
ij is the plasma susceptibility. The plasma susceptibility

can show behaviors which are in some respects analogous to those studied forh~j (i0)~j (i0) i
in section. 3. We will not give explicit expressions for every element in the plasma
susceptibility, but to give an example it is instructive to examine the expression for� (a)

xx

which, using results from [26], can be written

� (a)
xx =

2
p

�q 2
an(a0)

k2
? � 2

i vta jkkj
�

h 1X

l= �1

l2D(� l )I l (k2
? � 2

i ) exp (� k2
? � 2

i )

+ i
p

�
kk

jkkj

1X

l= �1

l2 exp (� � 2
l � k2

? � 2
i )I l (k2

? � 2
i )

i
;

(19)

where D(x) is the Dawson integral, which we note gives zero forx = 0 and in the
limits x ! �1 . For � � 90� the sums appearing in equation (19) give the same type of
oscillatory behavior near ion cyclotron harmonics as was found for h~j (i0)~j (i0) i in section. 3
{ indeed, the sum in the imaginary part of� (a)

xx is identical to the sum in equation (14)
for h~j (a0)

x ~j (a0)
x i . However, the uctuation operators depend on all elements ofthe plasma

susceptibility through the inverse wave tensor. For� � 90� we may therefore expect the
uctuation operators to show an oscillatory behavior analogous, but not identical, to
the behavior found forh~j (i0)~j (i0) i . This behavior can be identi�ed with the inuence of
weakly damped ion Bernstein waves on the plasma dielectric response to the unscreened
current uctuations, and its inuence on the spectrum will be examined below.
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Figure 5. (a) Re(j� j) in the standard plasma scenario, but for di�erent values of � .
For � � 90� weakly damped IBWs cause oscillations and eventually sign inversions
in Re(j� j) at frequencies j� j=� cH . 20. The fast magnetosonic wave causes a sign
inversion at higher frequencies (not shown in the left graph, but the e�ects are seen
on the right). ( b) Ŝ(ne)

x for � = 93 � in the standard plasma scenario. The fast
magnetosonic wave and IBWs cause enhanced dielectric response in their respective
frequency ranges. The IBW signatures are poorly resolved onthe frequency scale used
here; they will be examined in greater detail below.

Plasma waves satisfy the dispersion relationj� j = 0 where j� j is the determinant
of the wave tensor. At frequencies and wave vectors in the vicinity of such waves we
expect the plasma dielectric response to unscreened thermal uctuations to be strongly
enhanced { with damped waves giving rise to weaker signatures covering broader
frequency ranges than undamped waves. Each element in the uctuation operators,
equations (17), contains terms proportional to an element of the inverse wave tensor
and therebyx to j� j � 1 which will be nearly singular in the vicinity of a weakly damped
wave. For scattering geometries withk � close to or equal to the real part of the wave
vector for a weakly damped wave, a peak will therefore occur in the spectrum near the
wave frequency. This is illustrated in �gure 5 which showŝS(ne)

x and the real part of the
determinant of the wave tensor for three di�erent values of� and with other parameters
as in the plasma standard scenario.

For � far from 90� , the real part of j� j is smooth and uniformly positive as a
function of frequency. For� approaching 90� it starts to oscillate at low frequencies,
and eventually changes sign (thus crossing zero) at frequencies close to the hydrogen
cyclotron harmonics. For� even closer to 90� it crosses zero at the deuterium cyclotron
harmonics as well. The imaginary part behaves in a qualitatively similar manner and is
not shown { but we note that it does not cross zero at the same frequencies as the real
part, which indicates that these are damped waves. For� = 90� the real part of j� j has
a singular behavior as it changes sign, and for high frequency shifts the sign inversions

x From Cramer's rule for matrix inversion.
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take place very close to the cyclotron harmonics. Meanwhilethe imaginary part goes to
zero for� = 90� and the waves are now undamped { except for collisional damping which
is not included in the model used here. These waves are the pure ion Bernstein waves
while the damped waves for� � 90� are neutralized ion Bernstein waves { neutralized
because the electrons are able to stream along the magnetic �eld to neutralize the wave
space charge. For fuel ion ratio diagnostics the neutralized ion Bernstein waves are the
more relevant of the two, and they will be our main focus below. As expected we see
in �gure 5b that the waves strongly enhance the uctuation operator in the frequency
rangej� j=� cH . 20. Outside this range we note that the fast magnetosonic wave appears
at frequencies aroundj� j=� cH ' 53 (for the standard scenario used here; the precise
frequency depends on� ). The wave tensor determinant, Re(j� j), then changes sign
again, and the wave causes a strong response in the uctuation operators.

IBWs propagate at frequencies between harmonics of the cyclotron frequencies of
each ion species in the plasma. Thus, in a pure hydrogen plasma the IBWs propagate
between the hydrogen cyclotron harmonics. In a plasma with hydrogen and deuterium
the dispersion relation changes to produce waves between each hydrogen harmonic and
the neighboring deuterium harmonics. In plasmas with a larger number of ion species
the picture becomes progressively more complicated, with each new species altering
the dispersion relation for existing waves and giving rise to new waves if its cyclotron
frequency does not coincide with those of the other ions. Forthe wave vectors considered
here the frequencies will in practice be close to the ion cyclotron harmonics. Therefore
each wave can, in a rough sense, be associated with a particular ion species, and the
strength of its signature in the spectrum will increase withthe density of that ion.

It is not possible to examine every element of the uctuationoperators in detail
here. For simplicity we focus on the real part of̂S(Ea)

xx , and �gure 6 illustrates some
key properties of its dependence onRH = nH=(nH + nD ). Ŝ(Ea)

xx was chosen only for
ease in plotting as it is well behaved at� � = 0. The points discussed below apply to
the uctuation operators in general. Figure 6a showŝS(Ea)

xx for the standard plasma
scenario and for plasmas dominated by respectively hydrogen and deuterium with the
other parameters kept �xed. As expected the IBWs cause enhanced dielectric response
at certain frequencies and at these frequencies peaks { or IBW signatures { appear in
Ŝ(Ea)

xx . Several properties of the IBW signatures are worth discussing. First, although
the peaks appear at frequency intervals corresponding roughly to the ion cyclotron
frequencies, they do not always appear at or even near the cyclotron harmonics. The
IBW signatures originate from a dispersive wave, so in this respect their behavior can
be very di�erent from that of the ICM signatures which are always centered on the
ion cyclotron harmonics. We also note in �gure 6 that signatures of IBWs related
to the presence of hydrogen tend to dominate. Clear signatures of IBWs related to
deuterium are seen only in plasmas dominated by deuterium, and even then they are
mainly seen near the lower cyclotron harmonics. This trend results from cyclotron
damping of the IBWs. IBWs are a�ected by cyclotron damping when their frequencies
fall in intervals roughly given by j!=! ci � nj . jkk� i j where n is any positive integer.
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Figure 6. (a) The uctuation operator Ŝ(E)
xx for the standard plasma scenario and

for plasmas dominated by respectively hydrogen and deuterium with other parameters
kept �xed. IBW signatures related to hydrogen dominate the operator except at low
hydrogen density where signatures related to deuterium appear. (b) Derivatives of
Ŝ(E)

xx and h~j (I0)
x ~j (I0)

x i with respect to RH . Note that in the legend Sxx ;E = Ŝ(E)
xx .

To facilitate comparison of the two the �gure shows the logarithmic derivative
dln(y)=dRH = y� 1d(y)=dRH . The very di�erent functional dependence of the two
quantities on RH helps break degeneracies with other parameters.

For conditions relevant to the CTS measurements at TEXTOR we havekk� H � 5 cos� .
Cyclotron damping is therefore signi�cant unless the resolved wave vector is nearly
perpendicular to the magnetic �eld, and for practical purposes all the IBWs considered
here are subject to some degree of cyclotron damping. Corresponding to the trend seen
in �gure 6, cyclotron damping will a�ect IBWs related to deuterium more strongly and
over wider frequency ranges than it will a�ect IBWs related to hydrogen (assuming
thermal equilibrium).

Although the wave damping decreases the strength of IBW signatures, we should
note that it has certain useful features as well. Whereas theICM signatures depend on
ion charge and mass only in the combinationsTi=mi through the thermal velocity and
qi=mi through the cyclotron frequency, the cyclotron damping is fundamentally a �nite
Larmor radius e�ect which depends on the ratio

p
Timi=qi . Thus, degeneracies in the

functional dependence of the spectrum on the mass, charge and temperature of each ion
can be resolved through the inuence of wave damping.

The graph in �gure 6b shows the derivatives ofh~j (I0)
x ~j (I0)

x i and Ŝ(Ea)
xx with respect

to RH . For easy comparison of these rather di�erent quantities the �gure shows the
derivative normalized by the quantity itself, dln(y)=dRH = y� 1d(y)=dRH . Here it is
worth noting the signs, relative size and di�erent shapes ofthe two derivatives.

In thermal equilibrium the velocity distribution for hydro gen is wider than that
for deuterium. The derivative of any component inh~j (I0) ~j (I0) i with respect to RH will
therefore be negative at lowj� � j and positive at high j� � j. Similarly, increases in the
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ion temperature have the general e�ect of increasing the average thermal velocity, so
in the absence of ICM signatures the functional dependence of h~j (I0) ~j (I0) i on Ti and RH

can be very similar. However, all ICM signatures decrease in amplitude for increasing
Ti (see the discussion of equation (16)) while some ICM signatures will increase and
some will decrease in amplitude whenRH changes. This ability to break degeneracies in
the functional dependence on di�erent parameters signi�cantly increases the diagnostic
potential of spectra with ICM and IBW signatures.

In comparison with h~j (I0) ~j (I0) i we see that the derivative of̂S(Ea)
xx stays negative at

all frequencies. There are also di�erences with respect to the inuence of ICM and IBW
signatures on the two derivatives. Peaks in the derivativesdo not occur at the same
frequencies and they have di�erent widths and amplitudes. The details are di�erent
for derivatives of other operators, but none of them closelyreproduce derivatives of
h~j (I0) ~j (I0) i . These di�erences in the functional dependencies onRH further decrease the
possibility that the functional dependence of the total spectrum on RH will be degenerate
with the dependence on other parameters. Therefore, whileh~j (I0) ~j (I0) i is in general more
sensitive than the uctuation operators toRH and the amplitude of ICM signatures are
in general greater than IBW signatures, it is not implied that h~j (I0) ~j (I0) i dominates the
diagnostic potential. Indeed, we shall see below that for certain parameter ranges both
e�ects are required to diagnoseRH .

5. Relative importance of ICM and IBW signatures for fuel ion ratio
diagnostics

Since both the uctuation operators and the unscreened current correlation tensor
display peaks for� � 90� , it is relevant to consider the origin of peaks in the �nal
spectrum { i.e., whether peaks in the spectrum are ICM or IBW signatures. However,
with the exception of certain extreme cases it is not possible to give an unambiguous
answer to this question, and in general the origin of the peaks will be mixed with
contributions from both ICM and IBWs. Figure 7 seeks to illustrate this issue. Figure 7a
shows the total scattering function and some of the more important elements in � (e)

and � (I) . The total scattering function is dominated by � (I)
nn , which describes scattering

o� density uctuations. Figure 7b compares � (I)
nn to a few of the elements multiplied to

calculate � (I)
nn . Although the relative amplitudes of the ICM signatures inh~j (I0) ~j (I0) i are

typically greater than the amplitudes of the IBW signaturesin the uctuation operators,
it would be misleading to suggest that the ion cyclotron features dominate entirely. The
combined peaks have a di�erent shape and are often not centered on an ion cyclotron
harmonic. Further, we should note from �gure 7a that � (e) contributes signi�cantly
to the total scattering function. Sinceh~j (e0)~j (e0) i does not contain ICM signatures, any
peaks in � (e) result purely from IBW signatures in the uctuation operators. For � � 90�

the contribution of � (e) to the total scattering function is typically comparable to the
ion terms, and it may even dominate forTe > T i . Therefore, even if the ICM signatures
were the dominant cause of peaks in �(I) , peaks in the total scattering function would
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Figure 7. (a) Total scattering function for the standard scenario compared with � (e)
nn

and the diagonal elements of �(I) . The scattering function is strongly dominated by
the � (I)

nn and � (e)
nn elements. (b) The � (I)

nn compared with h~j (I0)
y ~j (I0)

y i and Ŝ(ni)
y { i.e., to

some of the factors multiplied when calculating � (I)
nn . For comparison the quantities are

scaled to �t on the same graph. Both the ICM and IBW signatures have a signi�cant
inuence, and except in special cases it is in general not possible to say that peaks
in the scattering function are dominated by a single e�ect. Note that in the legend
Sij ;� = Ŝ( � )

ij and � a;�� = � (a)
�� .

contain contributions from both e�ects.
To give an estimate of the relative importance of IBW and ICM signatures for

fuel ion ratio measurements by CTS, we can perform a sensitivity analysis and thereby
give theoretical estimates of the uncertainties of such measurements under di�erent
assumptions about ion magnetization. By calculating either h~j (I0) ~j (I0) i or the uctuation
operators with unmagnetized ions we �nd the theoretical uncertainty of the inferred
values ofRH when the e�ects of the magnetic �eld are suppressed in eitherof the two
terms. When the magnetic �eld is omitted in h~j (I0) ~j (I0) i the spectrum will contain no
ICM signatures. When ion magnetization is suppressed in theuctuation operators the
spectrum contains no signatures of IBWs (or other waves dependent on the magnetic
�eld). By comparison of the resulting uncertainties we can then estimate the relative
importance of each e�ect for the diagnostic potential.

We estimate the uncertainty of the inferred value ofRH within the framework
of a Bayesian least squares method of inference [27] frequently used to interpret
CTS measurements [7{12]. As we have seen above, the CTS spectrum depends {
in a non-trivial way { on a number of parameters besides the fuel ion ratio. The
functional dependence on these parameters is taken into account in the analysis, and
the Bayesian approach further allows prior knowledge from other diagnostics about all
model parameters to be taken into account. The resulting posterior uncertainty on a
given parameter (i.e., the state of knowledge after the measurement) therefore includes
uncertainties in the prior information and further dependson the uncertainties in the
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CTS spectrum, and the Jacobian for the spectrum [28, 29]. Within this framework
and for given assumptions about the uncertainties in the prior information and the
measured spectrum (i.e., the signal to noise ratio of the CTSreceiver), the uncertainty
of the inferred fuel ion ratio can therefore be estimated theoretically for a given set of
plasma and system parameters.

Before discussing the results of these calculations we stress again that the outcome
of the Bayesian analysis is an uncertainty which takes into account the assumed level
of prior uncertainty for each parameter. Therefore the diagnostic potential of the
measurement is expressed by the ratio between the prior and posterior uncertainties
rather than by the posterior uncertainty alone. We shall assume a prior uncertainty
(one standard deviation) of 0.5 forRH , and any posterior uncertainty below this value
expresses a potential to increase knowledge aboutRH through CTS measurements. We
also stress that the uncertainties found with the approach taken here are basically an
expression of the sensitivity of the spectrum toRH . They assume uncorrelated normally
distributed noise levels in the data, and they assume that itis numerically possible to
�nd the optimal �t to any measured spectrum (optimal in the least squares sense).
Systematic errors resulting from inaccuracies in e.g. receiver calibration, background
subtraction or the numerical optimization method are therefore not included. However,
within these limits the analysis does provide some insight in the sensitivity of the
spectrum to plasma composition, and here we use it to illustrate the e�ects of the
di�erent assumptions about ion magnetization.

Figure 8 shows results of such a sensitivity analysis for a scan of � and RH . All
calculations were done for the standard plasma parameters and the assumed prior
uncertainties given in table A1 in Appendix A. The frequency resolution and bandwidth
of the spectrum were taken to be those of the modi�ed CTS receiver at TEXTOR.
Similarly, the uncertainties in the measured spectra are assumed to be 2% of the signal
strength as was found in initial experiments with the modi�ed receiver and as is expected
from theory [20].

When including e�ects of the magnetic �eld in all terms { i.e., with no simplifying
assumptions { the posterior uncertainty is signi�cantly reduced from the prior value
when � is close to 90� . As may be expected from the analysis in the preceding sections
the uncertainty is lowest for lowRH , but the ability to diagnose plasma compositions is
by no means lost at highRH .

Comparing the result with unmagnetizedh~j (I0) ~j (I0) i to results with unmagnetized
uctuation operators, we generally �nd slightly greater uncertainties with unmagnetized
h~j (I0) ~j (I0) i (i.e., without ICM signatures). This shows that, at least inthis special case,
the ICM signatures are slightly more important for determination of RH than the IBW
signatures (and any other e�ect of the magnetic �eld in the uctuation operators).
However, to say that one of the two e�ects clearly dominates the diagnostic potential
would be misleading. Especially at highRH we see that in fact both e�ects are needed to
diagnose plasma composition. This could indicate a degeneracy between the functional
dependence of the spectrum onRH and another parameter or set of parameters, which
















