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Electrohydrodynamics of binary electrolytes driven by modulated surface potentials
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We study the electrohydrodynamics of the Debye screening layer that arises in an aqueous binary solution
near a planar insulating wall when applying a spatially modulated ac voltage. Combining this with first order
perturbation theory we establish the governing equations for the full nonequilibrium problem and obtain
analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential.
We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our
work provides the theoretical foundations of circuit models discussed in the literature. The nonequilibrium
approach also reveals unexpected high-frequency dynamics not predicted by circuit models.

DOI: 10.1103/PhysRevE.71.056306 PACS numberssd: 47.65.1a, 47.32.2y, 47.70.2n, 85.90.1h

I. INTRODUCTION

Recently, there has been quite some interest in electrohy-
drodynamics in microfluidic systems. ac-driven, modulated
surface potentials have been used for pumping, fluid circula-
tion, and mixing f1–13g. For an overview of ac electro-
osmosis we refer to Refs.f14–19g and references therein.

Although ac electro-osmosis is typically analyzed with
the help of homogeneous circuit elements open questions
remain about the applicability of such approachesf19g. We
reconsider the problem studied by Ajdarif2g where an elec-
trolyte is perturbed by an ac-driven spatially modulated sur-
face potential, but include explicitly an insulating layer be-
tween the electrode providing the driving potential and the
electrolyte. We primarily think of this insulator as an oxide
grown intentionally for device purposes, but it could also
represent the molecular Stern layer in case of nonoxidized
electrodes. We develop a full nonequilibrium description of
the electrohydrodynamics of this system thus extending pre-
vious modeling of the surface and the Debye layer as simple
capacitors. This allows us to study the full dynamics of ion
concentrations, electrical potentials, velocity fields, pressure
gradient fields, and electrical currents as well as the justifi-
cations for a description based on homogeneous circuit ele-
ments.

In the following we consider a binary electrolyte, i.e., an
aqueous solution of a salt containing a positive and a nega-
tive type of ions with charges +Ze and −Ze, respectively,
whereZ is the valence ande the elementary charge. In terms
of Cartesian coordinatesxyzthe electrolyte is confined to the
semi-infinite spacex.0 by an impenetrable, homogeneous,
and planar insulating layer with dielectric constantes placed
at −d,x,0 ssee Fig. 1d. The insulating layer is bounded by
a conductor atx,−d which has been biased at the surface
x=−d by a spatially modulated, external ac potential
Vextsy,td,

Vextsy,td = V0cossqydeivt, s1d

whereV0 is the amplitude,q the wave number of the spatial
modulation, andv the driving angular frequency.

There is complete translation invariance along thez axis,
so thez coordinate drops out of our analysis, and all posi-
tions r =xex+yey are therefore just referring to thexy plane.

The paper is organized as follows. In Sec. II we present
the nonequilibrium description and in Secs. III and IV we
analytically study linearized equations of the static and dy-
namic regimes, respectively. In Sec. V we study numerical
solutions of the fully coupled nonlinear electrohydrodynamic
problem. Finally, in Sec. VI we compare these solutions with
the analytical solutions of the linearized equations, and fur-
thermore contrast our results with the literature, before we
conclude in Sec. VII.

II. NONEQUILIBRIUM DESCRIPTION

The basic nonequilibrium formalism for continuum elec-
trohydrodynamics is well knownssee, e.g., Ref.f19gd, but as
mentioned in the Introduction we explicitly include an insu-
lating layer in the description. We do not include an intrinsic
z potential, i.e., no unpassivated surface charges on the
insulator-electrolyte interface. We note that experimentally
any intrinsic homogeneousz potential may be compensated

FIG. 1. A sketch of the system under study. The binary electro-
lyte is situated in the half spacex.0. Below it, for −d,x,0, is a
planar wall consisting of an insulating dielectric slab of thicknessd
and below that, forx,−d, is a semi-infinite conductor. The top
surface,x=−d, of the conductor is biased by a periodically modu-
lated potentialVextsy,td of period 2p /q sdotted lined, which gives
rise to the formation of a Debye screening layer of thicknesslD in
the electrolytesdashed lined.
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by a corresponding dc shift added to the applied ac potential.
Due to heterogeneous surfaces, it may be anticipated that
although the averagez potential is nulled out, there might be
fluctuations left. These will be the topic for future work. For
a zero intrinsicz potential we solve the full nonlinear equa-
tions numerically, but to obtain analytical results we also
study the linearized equation with special emphasis on the
capacitance due to the insulating layer. In Sec. V we show
that for experimental relevant parameters, the linear theory is
surprisingly good. Typical values of various central param-
eters are listed in Table I.

A. The insulating layer, −d,x,0

The insulating layer contains neither free space charge nor
free currents so the electrical potentialfsr ,td is governed by
the Laplace equation,

=2fsr ,td = 0 for −d , x , 0. s2d

B. The electrolyte,x.0

In the liquid electrolyte we consider the ionic densities
n±sr ,td, the potentialfsr ,td, the ionic current densitiessthe
ionic flux densitiesd i±sr ,td, the velocity fieldvsr ,td of the
electrolyte, and the pressurepsr ,td. In the following we sup-
presssr ,td unless needed for clarity.

The number densities of the ions couple to the potential
via Poisson’s equation,

=2f = −
Ze

e
sn+ − n−d. s3ad

The ionic current densities are coupled to the ionic densi-
ties by a continuity equation, which in the absence of any
chemical reactions in the system is

]tn
± = − = · i±. s3bd

The presence of convection or of gradients in the densities
n± and the electric potentialf will generate ionic current

densitiesi±. The Nernst-Planck equation gives these currents

i± = − D = n± + n±v 7 mn± = f, s3cd

where, for simplicity, we have assumed that the two types of
ions have the same diffusivityD and the same mobilitym.
We remind the reader that both the diffusivityD and the
electric conductivitys are linked to the mobilitym via the
Einstein relationD=skBT/Zedm ands±=Zen±m.

Finally, the velocity field and pressure of the liquid are
coupled to the potential and ionic densities by the Navier-
Stokes equation

rf]tv + sv · = dvg = − = p + h=2v − Zefn+ − n−g = f,

s3dd

wherer is the mass density,h is the viscosity of the liquid,
andp is the pressure. Furthermore, treating the electrolyte as
an incompressible fluid we have

= ·v = 0. s3ed

The coupled field equations Eqs.s3ad–s3ed fully govern the
physical fieldsn±, f, i±, v, andp.

C. Boundary conditions

Assuming a vanishingz potential the boundary condition
for the electric potential is

ufsr ,tdux=−d = Vextsy,td, s4ad

ufsr ,tdux=` = 0. s4bd

At the interface between the electrolyte and the insulating
region the normal component of the ionic current density
vanishes,

0 = u]xn
±sr ,tdux=0 ±

Ze

kBT
un±sr ,td]xfsr ,tdux=0. s5d

Here, we have utilized Eq.s3cd and the absence of convec-
tion at the interface due to the no-slip boundary condition,

uvsr ,tdux=0 = 0. s6d

For the ionic densities we have

un±sr ,tdux=` = n`, s7d

wheren` is the homogeneous density of either of the two
types of ions in the absence of an external perturbation, i.e.,
when V0=0. For the pressure, we assume that we have no
externally applied pressure gradients so thatp is the internal
pressure caused by fluid flow and the electrical forces on the
ions.

III. STATIC REGIME, v=0

In the static regime we have equilibrium and neither cur-
rent nor fluid flow, i.e.,i±=0 andv=0. The pressure gradient
balances the electrical forces on the charges. The governing
equations forf andn± of course reduce to those of electro-
statics.

TABLE I. Typical values of central parameters.

Spatial modulation q−1 10−5 m

Insulator thickness d 10−8 m

Debye length lD 10−8 m

Resonance frequency v* 105 rad/s

Debye frequency vD=s` /e 107 rad/s

Critical frequency vc=sh /rdq2 104 rad/s

Thermal voltage VT=s1+ddkBT/Ze 250 mV

Convective voltage Vc=Îs1+ddhD /e 100 mV

Ionic density n` 1 mol l−1

Viscosity h 10−3 Pa s

Mass density r 103 kg m−3

Ionic diffusivity D 10−9 m2 s−1

Capacitance ratio d=CD /Cs 10
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In the insulating layer it follows from Eqs.s2d and s4ad
that

fsr d = fB1e
−qx + B2e

qxgcossqyd for − d , x , 0, s8d

whereB1 andB2 are integration constants.
In the electrolytefsr d is governed by the nonlinear

Poisson-Boltzmann equationf19g

=2fsr d =
kBT

ZelD
2 sinhF Ze

kBT
fsr dG for x . 0, s9d

introducing the Debye screening length

lD ;Î ekBT

2Z2e2n`

. s10d

For q going to zero we have a constant surface potential

lim
q→0

ufsr dux=0 ; f0 s11ad

and the solution to Eq.s9d is given by the well-known Gouy-
Chapman solutionf19g

lim
q→0

fsr d =
4kBT

Ze
arctanhFtanhSZef0

4kBT
De−x/lDG . s11bd

For qÞ0 we are not aware of any analytical solutions, but as
we shall show, analytical results can be obtained in the
Debye-Hückel approximationZef!kBT, where Eq.s9d be-
comes linear,

=2fsr d = lD
−2fsr d for x . 0. s12d

Here, the corrections are to third order inZef /kBT because
sinhsxd=x+Osx3d. The space charge follows from Poisson’s
equation Eq.s3ad. From a straightforward solution forf and
Zesn+−n−d we arrive at the following expression relating the
total potential drop across the system and the accumulated
charge in the electrolyte:

fs`,yd − fs− d,yd ; Ceff
−1E

0

`

dx Zefn+sr d − n−sr dg.

s13ad

The coefficient

Ceff
−1 = f1 + sqlDd2g

sinhsqdd
qd

Cs
−1 + Î1 + sqlDd2coshsqddCD

−1

s13bd

is identified as the inverse of an effective series capacitance.
The constantCs is the intrinsic surface capacitance andCD
the capacitance of the Debye layer given by

Cs ;
es

d
, s13cd

CD ;
e

lD
. s13dd

In Ref. f2g the potential in the bulk of the electrolytesx
@lDd is governed by the Laplace equation, which is coupled

to the external potentialVext by an effective capacitanceC0
given by

C0 ; sCs
−1 + CD

−1d−1. s13ed

It follows from Eq.s13bd that this approach forv=0 is valid
up to second order in the parametersqlD andqd.

IV. LINEARIZED DYNAMIC REGIME, v.0

We now solve Eqs.s3ad–s3ed in the dynamic regime,v
.0. First the ionic current densities are eliminated by insert-
ing Eq.s3cd into Eq.s3bd. Using the incompressibility of the
fluid, Eq. s3ed, we get the continuity equation

]tn
± = D =2n± − s=n±d ·v ± m = · sn± = fd. s14d

A. Debye-Hückel approximation

To advance further by analytical methods, we now linear-
ize the continuity equation Eq.s14d in the density as follows.
We assumen±sr ,tdux=`;n` and write

n±sr ,td = n` + dn±sr ,td, lim
x→`

dn±sr ,td = 0. s15d

Since we assume a zero intrinsicz potential it is a nonzero
V0 that spawnsdn±Þ0, and when the applied voltageV0 is
much smaller than the thermal voltageVT, defined byVT
;s1+CD /CsdkBT/Ze sas we shall see in the next subsec-
tiond, we have udn±u!n`. In this limit the Debye-Hückel
approximation is valid, andn± =f is substituted byn`=f in
Eq. s14d. We subsequently use Eq.s3ad to replace=2f with
−Zen /e where

n ; n+ − n− = dn+ − dn−. s16d

Finally, we form the difference of the ± versions of Eq.s14d
and obtain the partial differential equation

]tn = FD=2 − D
1

lD
2 − v · =Gn. s17d

B. Diffusive regime

Our study of the static regime reconfirms the well-known
result that the net charge density is nonzero only in the De-
bye layer,x&3lD. In this region convection will be sup-
pressed due to the no-slip boundary condition. Thus, convec-
tion can be neglected, diffusion will dominate
scorresponding to a low Péclet numberd, and the electrody-
namics can be solved independently of the hydrodynamics.
On the other hand, the hydrodynamics of course still depends
on the electrodynamics via the body force. Since the density
differencen changes over the length scaleslD and q−1 for
the x and y directions, respectively, the condition for the
decoupling isuvxu /lD+ uvyuq!Dq2 for 0,x&3lD. In this
limit Eq. s17d has a general cossqydeivt modulated decaying
solution of the form

n = C1e
−kxcossqydeivt, x . 0, s18ad

where the decay parameterk depends on the ratio between
the frequencyv and the Debye frequencyvD,
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k ;
1

lD

Î1 + sqlDd2 + i
v

vD
, s18bd

vD ;
D

lD
2 . s18cd

For the potential we seek a solution of a form similar to Eq.
s18ad, f~cossqydeivt, and substituting this together with Eq.
s18ad into Eq. s3ad yields

s]x
2 − q2df = −

Ze

e
C1e

−kxcossqydeivt. s19d

Demandingfsr ,tdux=`=0 the solution is

f =
Ze/e

q2 − k2fC1e
−kx + C2e

−qxgcossqydeivt, x . 0. s20d

In the insulating layer we have the following cossqydeivt

modulated general solution to Eq.s2d:

f = fC3e
−qx + C4e

qxgcossqydeivt, − d , x , 0. s21d

In order to determineC1, C2, C3, andC4 we first consider the
boundary condition for the current. Applying the Debye-
Hückel approximation to the second term in Eq.s5d and
forming the difference of the ± solutions we arrive at

0 =U]xFnsr ,td +
CD

ZelD
fsr ,tdGU

x=0
. s22d

Together with the boundary condition forf at x=−d as well
as the continuity off ande]xf atx=0 we may determine the
constants straightforwardly keeping in mind thatk depends
on q andv. For the coefficients in the electrolyte we get

C1 =
qV0

Ze

k

q
Ceffsvd s23ad

and

C2 = − i
v

vD

k

q
C1, s23bd

while for the insulator the coefficients have a similar, but less
compact form. Above,

Ceff
−1svd = sklDd2sinhsqdd

qd
Cs

−1

+ klD
qlDsqlD + klDd + iv/vD

qlDsqlD + klDd
coshsqddCD

−1,

s23cd

which satisfies the definition in Eq.s13ad and reduces to Eq.
s13bd in the dc limit. From the general solution for the po-
tential in the electrolyte, Eq.s20d, we may now in more
detail examine the constraints onV0 for the Debye-Hückel
approximation to be valid. Straightforward calculations show
that maxhfj!kBT/Ze corresponds to V0!VT;s1
+CD /CsdkBT/Ze for qd!1, qlD!1, and low frequencies.

C. Long-period and low-frequency modulation

Next, we consider the regime where the spatial period of
the modulation is much longer than all other length scales,
i.e., qlD!1 andqd!1. We also assume thatv!vD so that
k.1/lD. In this limit we get

n = −
qs`V0

ZelD

1

v* + iv
e−x/lDcossqydeivt + OsfqlDg2d s24d

and

f = V0
iv

v* + iv
e−qxcossqydeivt + OsqlDd, s25d

where we have used the notation of Ajdarif2g: resonance
frequency

v* = qlDs1 + ddvD, s26ad

conductivity

s` = fs+ + s−g` = evD, s26bd

and capacitance ratio

d =
CD

Cs
. s26cd

These results are equivalent to those in Ref.f2g if, similarly
to Eq. s13ad, we introduce the Debye layer surface charge
sDsyd=Zee0

`dx nsx,yd.

D. Body force

Until this point we have used the exponential notation for
the temporal dependence. However, since the body force is
essentially nonlinear in the electrical potential or densityfsee
the last term in Eq.s3ddg we have to take the real part to get
the body force, i.e.,F=−Zen=f=−ZeRehnjReh=fj so that
we get

F =
hv1

lD
2

coss2vt + wd
v/v* + v* /v

e−x/lD 3 f2 cos2sqydex + sins2qydeyg

+ OsfqlDg2d s27ad

where following Ref.f2g we have introduced

v1 ;
qeV0

2

4hs1 + dd
s27bd

and the frequency-dependent phase shift

w = − arctanS v

2v* −
v*

2v
D . s27cd

In the derivation of Eq.s27ad we have used that

ReH eivt

iv + v*JReH iveivt

iv + v*J =
− coss2vt + wd

2v*sv/v* + v* /vd
.

s28d

At low frequencies,F~v, it becomes maximal at the reso-
nance frequencyv* , and then it falls off again at higher
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frequencies. We note that limv→0F=OsfqlDg2d, but this
small force will just be balanced by a pressure gradient so
that limv→0v=0 and limv→0i

±=0.

E. Linearized flow in quasi-steady-state

In order to solve the Navier-Stokes equation Eq.s3dd, we
note that for a body force of small magnitude and with slow
temporal variation the fluid response is linear and the flow
will approximately be at steady state at each moment in time.
We begin by comparing the inertial terms on the left-hand
sidesLHSd with the viscous termssecond termd on the right-
hand sidesRHSd. The body force has a characteristic fre-
quencyv and two characteristic length scaleslD andq−1 for
thex andy directions, respectively. Since]t essentially gives
a factor of v, and = essentially giveslD

−1ex+qey, we can

show that the viscous term dominates over the LHS when
v!vc where

vc ;
h

r
minhq2,lD

−2j. s29d

For qlD!1 this means thatvc=sh /rdq2. In this way, for
small Reynolds numbers, we get

0 = − = p + h=2v + F, v ! vc s30d

which is the resulting quasi-steady-flow problem which is
linear in the velocity field. Slip-velocity approaches usually
rely on this equationssee Ref.f2g and references thereind.
However, Eqs.s30d ands27ad can actually be solved exactly
with a solution given by

vsr ,td = v1
coss2vt + wd
v/v* + v* /v

e−2qxf2qlDG1slD
−1dcoss2qydex + G1s2qdsins2qydeyg s31ad

=v1
coss2vt + wd
v/v* + v* /v

f− 2qxe−2qxcoss2qydex + hs1 − 2qxde−2qx − e−x/lDjsins2qydeyg + OsqlDd, s31bd

psr ,td = − 4qhv1
coss2vt + wd
v/v* + v* /v

e−2qxS 1 +G2s2qd
s1 + 2qlDd2coss2qyd + G2s0dD s32ad

=− 4qhv1
coss2vt + wd
v/v* + v* /v

Se−2qxcoss2qyd +
e−x/lD

4qlD
f1 + coss2qydgD + OsqlDd, s32bd

as may be verified by direct insertion. Above,

G1skd =
1 − 2qlD

f1 − s2qlDd2g2f1 − e−slD
−1−2qdx − s1 − 2qlDdkxg

s33ad

and

G2skd =
1 + klD

4qlD
e−slD

−1−2qdx s33bd

have been introduced. As seen the flow decays exponentially
over a length scale of 1/q whenv!vc. When the frequency
becomes comparable to or larger thanvc we have competing
length scales since the]tv term introduces an additional
length scale sh /rvd1/2, which as mentioned becomes
svc/vd1/2s1/qd for qlD!1. So in the above expressions for
v andp we expect that the spatial cutoff length changes from
s2qd−1 to L with

Lsvd ,
1

2q
minh1,Îvc/vj. s34d

Even forv!v* the conditionv!vc is not necessarily sat-
isfied. In fact, for the numbers in Table I we havevc,v*

,vD so at resonance 2qLsv*d=Îvc/v* !1.

F. Flow and separation of length scales

As mentioned above the flow is typically analyzed by
slip-velocity approaches and here we show how such an ap-
proach gives an asymptotic solution in full agreement with
the exact solution. We study the flow over alD scale at the
boundary first and then aq−1 scale. For this boundary layer
approach, we assume that forx&3lD, we havevx<0. Solv-
ing for the pressure and substituting into they component of
Eq. s30d we get

vy = vssy,tds1 − e−x/lDd + OsqlDd, x & 3lD, s35d

with the prefactor
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vssy,td ; v1
coss2 v t + wd
v/v* + v* /v

sins2 q yd. s36d

In the limit x*3lD andqlD!1 the velocityvs can be inter-
preted as a slip velocity at the wall acting as a conveyor belt
for the bulk fluid fsee Fig. 2sddg.

For x*3lD we have thatF is exponentially suppressed
and we solve Eq.s30d together with Eq.s3ed and the bound-
ary condition

vsr ,tdx=0 = vssy,tdey. s37d

To lowest order inqlD this gives

v . v1
coss2 v t + wd
v/v* + v* /v

e−2qxf− 2qxcoss2qydex

+ s1 − 2qxdsins2qydeyg, s38d

and

p . − 4qhv1
coss2vt + wd
v/v* + v* /v

e−2qxcoss2qyd. s39d

If we now substitute into Eq.s3dd we get sRHS−LHSd
~e−x/lD+Osv /vDd+OsfqlDg2d which shows that Eqs.s38d
and s39d are indeed excellent approximations to the full so-
lution of the nonlinear time-dependent Navier-Stokes equa-
tion Eq. s3dd for x*3lD. For the incompressibility con-
straint Eq.s3ed, our solution gives= ·v=OsfqlDg2d. In Fig.
2scd we show a plot of the velocity field, Eq.s38d, along with
the contours for constant velocity.

We note that in the limitx*3lD the exact solutions, Eqs.
s31bd and s32bd reduce to Eqs.s38d and s39d for the bulk.

V. FULL NUMERICAL SOLUTION

In this section we present results from numerical finite
element simulationssFEMLABd of the five coupled equations
Eqs. s3ad–s3ed, with the boundary conditions in Eqs.s4ad,
s4bd, ands5d–s7d. For simplicity we assume a low Reynolds
number so that we can neglect the inertial termsv ·= dv in
Eq. s3dd. This provides full access to the temporal and spatial
evolution of the physical quantitiesn±, f, i±, v, andp. The
spatially periodic problemsin the y directiond would typi-

cally be handled by applying periodic boundary conditions to
the unit cellse.g., 0,y,2p /qd. However, due to the sym-
metry of Vext the computational domain can be reduced to
0,y,p /q with homogeneous Dirichlet or Neumann
boundary conditions. For thex direction our domain is cut
off at a distancex=6p /q from the interface using Dirichlet
boundary conditions for the fields. Near the interface to the
insulator, 0,x&3lD, we employ a structured grid to resolve
the Debye layer. For the temporal evolution we employ the
FEMLAB time stepper directly starting from initial solutions at
t=0 which are zero everywhere. The duration of the transient
depends on the inertia in the system, but typically the tem-
poral harmonic state is fully evolved after a time of the order
s10–100dv−1. For our simulations we have used the typical
values in Table I except for the modulation where we have
usedq−1=10−6m and consequentlyv* =vc=106 rad/s. For
the external potentialVext we have used the imaginary part of
Eq. s1d swhich is zero att=0d with an amplitude 0,V0
,10 V and a driving frequency 104,v,108 rad/s.

In order to directly compare our numerical results to the
linearized theory we normalize frequencies by the resonance
frequencyv* , velocities byv1, voltages by the thermal volt-
ageVT, and capacitances byC0.

Figure 3 shows numerical results for the effective capaci-
tanceCeff fsee definition in Eq.s13adg as a function of the
frequency for varying amplitudesV0 of the external voltage.
The dashed line shows the corresponding analytical result
from Eq. s23cd. As seen there is a good agreement between
numerical results and our analytical predictions even forV0
.VT where the Debye-Hückel approximation is typically ex-
pected to work poorly. We furthermore note that at low fre-
quencies RehCeffj approachesC0 in full agreement with the
analytics and the log-log plot also reveals two distinct re-
gimes forv,v* andv.v* . In fact, dissipation is maximal
exactly at the resonance frequencyv* predicted by the linear
theory. The inset shows the relative error of the Debye-
Hückel approximation which at large voltages saturates at a
value of the orders1+dd−1, here equal to 0.09.

The linear theory predicts a harmonic velocity field with a
vanishing time average and our numerical simulations con-
firm this low-frequency dynamicsfsee maxr ,thvsr ,tdj in Fig.
4sadg. The corresponding solid line shows exact results
within the Debye-Hückel approximationf20g and the dashed

FIG. 2. The potentialf, pres-
sure p, and velocity fieldv. sad
shows a gray scale plot of the am-
plitude of the potentialf as a
function of qx and qy, Eq. s25d,
and sbd the pressurep, Eq. s39d.
Notice the period doubling in the
pressure compared to the electric
potential.scd shows a snapshot of
the harmonically oscillating ve-
locity field v in the bulk, Eq.s38d,
and sdd likewise in the Debye
layer, Eq. s35d. The flow pattern
contains rolls, which are indicated
by contours of constant velocity
sdashed linesd.
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line showssv /v* +v* /vd−1 as suggested by Eq.s38d. As
expected the induced harmonic motion peaks at the reso-
nance frequencyv* with a characteristic speedv1 fEq.
s27bdg. However, in the high-frequency dynamics we observe
the coexistence of a small but nonvanishing time-averaged
component, 0,maxrhkvsr ,tdltj!v1. Figure 4sad shows
maxrhkvsr ,tdltj as a function of frequency for different ex-
ternal voltages. The corresponding solid line shows exact
results within the Debye-Hückel approximationf20g. Figure
4sbd shows a particular example of the time-averaged veloc-
ity field kvsr ,tdlt.

VI. DISCUSSION

We have analyzed the full nonequilibrium electrohydro-
dynamics of the Debye screening layer that arise in an aque-
ous binary solution near a planar wall when applying a spa-
tially modulated ac voltageV0cossqydeivt fEq. s1dg. Using

first order perturbation theory we have obtained analytic so-
lutions for the pressure and velocity fields of the electrolyte
and for the electric potential. Our analytical solution applies
to the low-frequency Debye-Hückel regime where the ampli-
tude V0 of the external potential is lower than the thermal
voltage VT and the driving frequencyv is lower than the
inverse response time of the electrolytevD=s` /e ssee Secs.
IV A and IV Cd. It should be noted that our analysis does not
cover the special case of suddenly applied step voltages,
where the system selects its own intrinsic time scale different
from the external time scale 1/v f19g.

Furthermore, we have limited ourselves to the diffusive
regime where convection can be neglected corresponding to
a sufficiently low driving amplitude,V0!Vc where Vc

;Îs1+ddhD /e is a convective voltagessee first paragraph
of Sec. IV B; v,v1ey in the Debye layerd. We have also
considered the low-frequency regimev!vc where viscosity
dominates over inertiassee Sec. IV Ed.

Finally, we have considered the limit with the spatial
modulation being much longer than all other length scales in
the problem, i.e.,qd!1 and qlD!1 ssee Sec. IV Cd. In
summary this means that the analytical studies of the effect
of Eq. s1d are valid in the limits

q ! minhd−1,lD
−1j, s40ad

v ! minhvD,vcj, s40bd

V0 ! minhVT,Vcj. s40cd

As a main result we have supplied a proof for the validity of
the capacitor model. The full dynamics seems, however, not
to be captured by the capacitor model. Taking the time aver-
age in Eqs.s27ad ands38d we getkFlt=0 andkvlt=0 sin full
agreement with the discussion in Ref.f2gd. In contrast, we
obtain kFltÞ0 if we begin from Eqs.s18ad and s20d and
without expanding inv /vD andqlD, the result being finite
even in the zero-frequency limit. Somewhat similar results
were reported in another nonequilibrium studyf5g, though
for a different geometry. Naively, this observation could sug-
gest thatkvltÞ0 contrary to the statement in Ref.f2g. How-

FIG. 3. The real and the imaginary parts of the normalized ef-
fective capacitanceCeffsV0,vd /C0 versus the normalized frequency
v /v* for four different values of the voltage amplitudeV0/VT. The
dashed lines show the analytical results of the linear theory, Eq.
s23cd. The inset shows the relative deviationsbelow resonanced of
the full numerical solution forCeffsV0d /C0 from the Debye-Hückel
result as a function ofV0/VT.

FIG. 4. Numerical simulations of flow.sad shows the maximal velocity of the harmonic flow maxr ,thvsr ,tdj and the maximal velocity of
the time-averaged flow maxrhkvsr ,tdltj, both versus normalized frequency. The solid lines show exact results within the Debye-Hückel
approximationf20g and the dashed line showssv /v* +v* /vd−1 as suggested by Eq.s38d. sbd shows an example of the time-averaged
velocity field kvsr ,tdlt.
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ever, by also averaging over they direction we getkFylt,y

=0 suggesting thatkvylt,y=0 in agreement with the symmetry
arguments emphasized in Ref.f2g. If the finite kFlt does not
give the fluid a directional flow globally, we might speculate
that, at high frequencies, it makes the fluid circulate in
nonoscillating vorticesfsee Fig. 4sadg, whereas the fluid is at
rest at zero frequency, despitekFlt being finite. The solution
to this apparent contradiction lies in the pressure, which will
compensate the body force at low frequencies. We can ex-
plicitly show that the time-averaged body force can be writ-
ten as

kFsr ,tdlt = = pFsr d + Osfv/vDg2d s41d

where

pFsr d ;
1
4eq2V0

2

fqlDcoshsqdd + se/esdÎ1 + sqlDd2sinhsqddg2

3 e−2Î1+sqlDd2x/lDcos2sqyd, s42ad

=qhv1S1 +
CD

Cs
DSCeffs0d

CD
D21 + sqlDd2

sqlDd2

3 e−2Î1+sqlDd2x/lDcos2sqyd. s42bd

The form of Eq.s41d suggests that

kvsr ,tdlt = 0 + Osfv/vDg2d s43d

with pF being a pressure that compensates the low-frequency
part of the body forcefsee Eq.s30dg. The time-averaged
velocity field kvsr ,tdlt can be calculated rigorously and the

complex expressionsnot shownd agrees fully with Eq.s43d.
At high frequencies we expect stationary vortices, Fig. 4sbd,
to coexist with the harmonic fluid motion illustrated in Fig.
2scd, whereas at low frequencies the circulation vanishes and
we are left with the pure harmonic motion. Our time-
dependent finite-element simulations in Fig. 4 support this
picture, and similar time-averaged flow in a slightly different
geometry has been observed both experimentally, theoreti-
cally, and numericallyf4–6g.

VII. CONCLUSION

Our results provide the theoretical underpinning of the
capacitor model widely used in the literaturef2–4,6,7,15,19g,
and form a firm starting point for future studies of electroki-
netic pumps and mixers driven by spatially modulated sur-
face potentials. In general for large values ofd we find that
the Debye-Hückel approximation works well even at el-
evated voltagesfagreement within less thans1+dd−1g where
it is typically expected to work poorly. However, our non-
equilibrium approach has also revealed interesting shortcom-
ings in the capacitor approach for high-frequency dynamics
where static vortices appear along with the harmonic rolls
also predicted by the capacitor model.
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