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Electrohydrodynamics of binary electrolytes driven by modulated surface potentials

Niels Asger Mortenseh Laurits Hgjgaard Olesehlionel Belmon'? and Henrik Bruu
1MIC—Department of Micro and Nanotechnology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
%Ecole Centrale de Nantes, F-44321 Nantes, France
(Received 7 July 2004; revised manuscript received 14 December 2004; published 24 May 2005

We study the electrohydrodynamics of the Debye screening layer that arises in an aqueous binary solution
near a planar insulating wall when applying a spatially modulated ac voltage. Combining this with first order
perturbation theory we establish the governing equations for the full nonequilibrium problem and obtain
analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential.
We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our
work provides the theoretical foundations of circuit models discussed in the literature. The nonequilibrium
approach also reveals unexpected high-frequency dynamics not predicted by circuit models.

DOI: 10.1103/PhysReVvE.71.056306 PACS nuni)erd7.65+a, 47.32-y, 47.70—n, 85.90+h

I. INTRODUCTION There is complete translation invariance along zheis,
) ] ) so thez coordinate drops out of our analysis, and all posi-

Recently, there has been quite some interest in eleCtr°h¥ronsr:xe)(+yey are therefore just referring to they plane.
drodynamics in microfluidic systems. ac-driven, modulated e paper is organized as follows. In Sec. Il we present
surface potentials have been used for pumping, fluid circulage nonequilibrium description and in Secs. 1il and IV we
tion, and mixing[1-13. For an overview of ac electro- anaytically study linearized equations of the static and dy-
osmosis we refer to Reffl4-19 and references therein.  pamjic regimes, respectively. In Sec. V we study numerical
Although ac electro-osmosis is typically analyzed with 5o)ytions of the fully coupled nonlinear electrohydrodynamic
the help of homogeneous circuit elements open questiong,oplem. Finally, in Sec. VI we compare these solutions with
remain about the applicability of such approach®8]. We  he analytical solutions of the linearized equations, and fur-

reconsider the problem studied by Ajdg2] where an elec-  tharmore contrast our results with the literature, before we
trolyte is perturbed by an ac-driven spatially modulated sur¢nclude in Sec. VII.

face potential, but include explicitly an insulating layer be-

tween the electrode providing the driving potential and the

electrolyte. We primarily think of this insulator as an oxide Il. NONEQUILIBRIUM DESCRIPTION

grown intentionally for device purposes, but it could also

represent the molecular Stern layer in case of nonoxidized The basic nonequilibrium formalism for continuum elec-

electrodes. We develop a full nonequilibrium description oftrohydrodynamics is well know(see, e.g., Ref19]), but as

the electrohydrodynamics of this system thus extending prenentioned in the Introduction we explicitly include an insu-

vious mode"ng of the surface and the Debye |ayer as Simp|Lﬁting Iayer in the description. We do not include an intrinsic

capacitors. This allows us to study the full dynamics of ion{ potential, i.e., no unpassivated surface charges on the

concentrations, electrical potentials, velocity fields, pressurésulator-electrolyte interface. We note that experimentally

gradient fields, and electrical currents as well as the justifiany intrinsic homogeneous potential may be compensated

cations for a description based on homogeneous circuit ele-

ments. z4
In the following we consider a binary electrolyte, i.e., an

aqueous solution of a salt containing a positive and a nega- electrolyte

tive type of ions with charges e and Ze, respectively, P WO S ——

whereZ is the valence and the elementary charge. In terms z=0 — : 7

of Cartesian coordinateg/zthe electrolyte is confined to the 9 9

semi-infinite space&>0 by an impenetrable, homogeneous, )

and planar insulating layer with dielectric constapplaced

at -d<x<0 (see Fig. 1 The insulating layer is bounded by

a conductor ak<<—d which has been biased at the surface

x=—d by a spatially modulated, external ac potential FIG. 1. A sketch of the system under study. The binary electro-
Vex(Y,t) , lyte is situated in the half space>0. Below it, for d<x<0, is a
ex 1)

planar wall consisting of an insulating dielectric slab of thicknetss
ot and below that, fox<-d, is a semi-infinite conductor. The top
Vex(y,t) = Vocoday)e' ™, (1) surfacex=-d, of the conductor is biased by a periodically modu-
lated potentiaMg,((y,t) of period 27/q (dotted ling, which gives
whereV is the amplitudeq the wave number of the spatial rise to the formation of a Debye screening layer of thickngsn
modulation, andv the driving angular frequency. the electrolyte(dashed ling

7z
conductor Vext (¥, £ = 0)
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TABLE I. Typical values of central parameters. densities®. The Nernst-Planck equation gives these currents
iF=-DVnt+n*v ¥ un*V ¢, (30
Spatial modulation q* 10°m where, for simplicity, we have assumed that the two types of
Insulator thickness d 108m ions have the same diffusivit) and the same mobilityc.
Debye length \b 108 m We remind the reader that both the diffusiviy and the
Resonance frequency o 1P rad/s  €lectric conductivityo are linked to the mobilityu via the
: ) S . o
Debye frequency wp=0../ € 10" rad/s Elnstelrl} re'ﬁt'orDl_(!(BTf/_le)“ a;d"__zem‘% he liquid
Critical frequency w=(nl p)P 10* rad/s inally, the ve OCW. I€ld and pressure o the liqui are
Thermal voltage Vi=(1+ 5k T/ Ze 250 MV coupled to th_e potential and ionic densities by the Navier-
g ToLTOMe 112 Stokes equation
Convective voltage Ve=\(1+8) 7Dl e 100 mV
lonic density N 1 mol I ployv+(v- V)V]== Vp+pV -Zdn* -nT]V ¢,
Viscosity 7 103 Pas (3d)
. —3
Ma_ss d.ens.lt)./ P 1039k92m_l wherep is the mass density, is the viscosity of the liquid,
lonic d_'ﬁus""ty _ D 107 m"s andp is the pressure. Furthermore, treating the electrolyte as
Capacitance ratio 0=Cp/Cs 10 an incompressible fluid we have

V.v=0. (3¢
by a corresponding dc shift added to the applied ac potentialrhe coupled field equations Eq&a)
Due to heterogeneous surfaces, it may be anticipated th
although the averagépotential is nulled out, there might be
fluctuations left. These will be the topic for future work. For
a zero intrinsic potential we solve the full nonlinear equa- C. Boundary conditions
tions numerically, but to obtain analytical results we also  Assuming a vanishing potential the boundary condition
study the linearized equation with special emphasis on theyr the electric potential is
capacitance due to the insulating layer. In Sec. V we show

—(3e) fully govern the
ﬁhysical fieldsn*, ¢, i*, v, andp.

that for experimental relevant parameters, the linear theory is B(r,D)]x=-q = Vexdy:1), (43)
surprisingly good. Typical values of various central param-
eters are listed in Table I. (1 1), = 0. (4b)

At the interface between the electrolyte and the insulating

region the normal component of the ionic current density
The insulating layer contains neither free space charge nofanishes,

free currents so the electrical potentigk ,t) is governed by

. Ze
the Laplace equation, 0= g (r,t)|yo t T N (r, 1) (1, 1) =0 5

kg
V2¢(r,t)=0 for —d<x<O0. (2) -
Here, we have utilized Eq3c) and the absence of convec-

tion at the interface due to the no-slip boundary condition,
B. The electrolyte,x>0 v(r at)|x:0 =0. (6)

A. The insulating layer, -d<x<0

In the liquid electrolyte we consider the ionic densities
n*(r,t), the potentialg(r,t), the ionic current densitieghe
ionic flux densities i*(r ,t), the velocity fieldv(r,t) of the NE(F 1) |yeoe = Nao, (7)
electrolyte, and the pressupér,t). In the following we sup-
press(r,t) unless needed for clarity.

The number densities of the ions couple to the potenti
via Poisson’s equation,

For the ionic densities we have

wheren,, is the homogeneous density of either of the two
alypes of ions in the absence of an external perturbation, i.e.,

when V,=0. For the pressure, we assume that we have no

externally applied pressure gradients so {hé the internal

2 Ze, ., pressure caused by fluid flow and the electrical forces on the
Vig=-—"-m). (38 jons.

The ionic current densities are coupled to the ionic densi-
ties by a continuity equation, which in the absence of any

chemical reactions in the system is In the static regime we have equilibrium and neither cur-
_ . rent nor fluid flow, i.e.j*=0 andv=0. The pressure gradient
balances the electrical forces on the charges. The governing
The presence of convection or of gradients in the densitiesquations for$ andn* of course reduce to those of electro-
n* and the electric potentiap will generate ionic current statics.

Ill. STATIC REGIME, =0

056306-2
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In the insulating layer it follows from Eq€42) and (4a  to the external potentid¥,,; by an effective capacitandg,
that given by

&(r) =B, ¥+ Be™codqy) for —d<x<0, (8) Co= (Cr+ChH ™ (13e

where 3, and 3, are integration constants. It follows from Eq.(13b) that this approach fo©=0 is valid
In the electrolyte ¢(r) is governed by the nonlinear up to second order in the parametgps, andqd.

Poisson-Boltzmann equatidt9]
IV. LINEARIZED DYNAMIC REGIME, ®>0

) keT . Ze . . .
Vep(r) = Esmh ﬁ(f)(f) for x>0, 9 We now solve Eqgs(3a—(3e) in the dynamic regimeg
D B > 0. First the ionic current densities are eliminated by insert-
introducing the Debye screening length ing Eq.(30) into Eq.(3b). Using the incompressibility of the
” fluid, Eq. (3e), we get the continuity equation
_ ekgT + + + +
Ap =1/ 7%, (10) ANF=D VN - (Vnh) -v+uV - (V). (14

For q going to zero we have a constant surface potential A. Debye-Hiickel approximation

"mo B(1)|x=0= o (113 To advance further by analytical methods, we now linear-
a ize the continuity equation E@14) in the density as follows.
and the solution to Eq9) is given by the well-known Gouy- We assume(r ,t)|,-.=n., and write

ch lutiofi19
apman solutiof19] NE(r. 0 =n, + oni(rD),  limon(r,)=0.  (15)

X—00

lim (r) = 4k—BTarctam{tan)(%))e"‘%]. (11b) _ o o
q—0 Ze Ak T Since we assume a zero intringj@otential it is a nonzero

. . V, that spawnssn* # 0, and when the applied voltagg is
Forg= 0 we are not aware of any analytical SOIUt'.OnS’ t.)Ut 3Snuch smaller than the thermal voltadk, defined byVy
we shall show, analytical results can be obtained in thes(l+CD/CS)kBT/Ze (as we shall see in the next subsec-
Debye-Hiickel approximatiodies <ksT, where Eq.(9) be- tion), we have|on*|<n.. In this limit the Debye-Huckel
comes linear, approximation is valid, and*V ¢ is substituted by..V ¢ in
V2e(r) = )\qug(r) for x> 0. (12) Eq. (14). We subsequently use E(a) to replaceV2¢ with

) ) —Zevl € where
Here, the corrections are to third orderde¢/kgT because

sinh(x)=x+0O(x%). The space charge follows from Poisson’s v=n-n =n"-. (16)
eque}rtion_ Eq(3a). .From a straightforward solqtion fab _and Finally, we form the difference of the + versions of Ed4)
Ze(n =n") we arrive at the following expression relating the %Pd obtain the partial differential equation

total potential drop across the system and the accumulate

charge in the electrolyte: 1
g 4 &tv={DV2—D)\—2—v-V]v. (17)
47 _ D
d(=,y) - p(-dy) = Ce%J dx zdn*(r) - n(r)].
0 B. Diffusive regime

(133 Our study of the static regime reconfirms the well-known
The coefficient result that the net charge density is nonzero only in the De-
) sinh(qd) bye layer,x<3\p. In this region convection will be sup-
Cai=[1+(a\p)2]———C.* + V1 +(g\p)?coshqd)Ct pressed due to the no-slip boundary condition. Thus, convec-

qd tion can be neglected, diffusion will dominate

(13b) (corresponding to a low Péclet numpeand the electrody-
namics can be solved independently of the hydrodynamics.
On the other hand, the hydrodynamics of course still depends
on the electrodynamics via the body force. Since the density
difference v changes over the length scales and gt for
€ the x and y directions, respectively, the condition for the
=13 (139 decoupling is|v,//\p+|v,|q<Dg? for 0<x=3\p. In this
limit Eqg. (17) has a general cégy)e“* modulated decaying
solution of the form

The constanC; is the intrinsic surface capacitance a@g
the capacitance of the Debye layer given by

o= (13d v=Ci€ “cosqy)e”, x>0, (189

In Ref. [2] the potential in the bulk of the electrolytex  where the decay parameterdepends on the ratio between
>\p) is governed by the Laplace equation, which is coupledhe frequencyw and the Debye frequenayp,

056306-3
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1
k=1 +(hp)2+ i, (18b)
Ap wp
D
= — 18¢
wp )\ZD ( )

For the potential we seek a solution of a form similar to Eq.
(184, ¢p=codqy)e!, and substituting this together with Eq.

(183 into Eq. (39 yields

z .
(G-g)p=- —eCle‘“XCOS(qy)e' o, (19
€

Demandinge(r ,t)|y-..=0 the solution is

Ze ‘
= P2 62[61<9‘Kx + (e codqy)e®, x>0. (20
- K

In the insulating layer we have the following ¢qg)e“
modulated general solution to E):

& =[C3e %+ Ce™cogqy)d”, -d<x<0. (21

In order to determin€,, C,, C3, andC, we first consider the
boundary condition for the current. Applying the Debye-

Huckel approximation to the second term in H&) and
forming the difference of the + solutions we arrive at

0= o, v(r,t)+ (22)

o ¢(r,t)}
D

Zex %=0

Together with the boundary condition f@rat x=-d as well

as the continuity ofp anded,¢ atx=0 we may determine the

constants straightforwardly keeping in mind thatlepends
on g and w. For the coefficients in the electrolyte we get

qVo &
1= Z—e‘)aceff(a» (23a)
and
C,=-i—=¢,, (23b)
wp

PHYSICAL REVIEW E 71, 056306(2005

C. Long-period and low-frequency modulation
Next, we consider the regime where the spatial period of
the modulation is much longer than all other length scales,
i.e.,,g\p<<1 andgd<1. We also assume thai< wp so that
k=1/\p. In this limit we get

v=

_QoNo 1 ot 2
Zon o Fiot coday)e* + O([grp]) (24)

and

iw

¢=Vo e codqy)e“ + O(ghp), (25)

o +iw
where we have used the notation of Ajdf2i: resonance
frequency

o =q\p(1 +d)wp, (263
conductivity
0. =[0"+ 07 = ewp, (26b)
and capacitance ratio
5= CC:—: (260

These results are equivalent to those in R2¥.if, similarly
to Eq. (133, we introduce the Debye layer surface charge

op(y)=Zefgdx v(X,y).

D. Body force

Until this point we have used the exponential notation for
the temporal dependence. However, since the body force is
essentially nonlinear in the electrical potential or denjsge
the last term in Eq(3d)] we have to take the real part to get
the body force, i.e.F=-ZevV ¢p=-ZeRe{v}Re[V ¢} so that
we get

_ 1 C0820t @)
- )\% wlo +o'lo

o x [2 cod(qy)e, + sin(2qy)ey]

while for the insulator the coefficients have a similar, but lessvhere following Ref[2] we have introduced

compact form. Above,

_ sinh(qd) __
Call@) = (rhp)2 D oot
qd
AAp(gAp + KAp) +iw/wp -1
K coshgd)Cy,
® ghp(ghp + KA\p) a9%o
(230

+0O([anp]?) (279
qeVva
=— 27
LT a1+ (27
and the frequency-dependent phase shift
=- arctar{ @ _ w—) (270
¢ 20" 2w/’

In the derivation of Eq(278 we have used that

which satisfies the definition in E¢139 and reduces to Eq. ) )

(13b) in the dc limit. From the general solution for the po- et R iwe | - cog2ot+¢)
tential in the electrolyte, Eq(20), we may now in more 0w+ o vt | 20 (oo +olo)
detail examine the constraints &fy for the Debye-Huckel (29)
approximation to be valid. Straightforward calculations show

that max¢}<kgT/Ze corresponds to Vo<Vi=(1
+Cp/CykgT/Ze for qd<1, g\p<<1, and low frequencies.

At low frequenciesF « w, it becomes maximal at the reso-
nance frequency’, and then it falls off again at higher

056306-4
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frequencies. We note that ljnoF=0(g\p]?), but this show that the viscous term dominates over the LHS when
small force will just be balanced by a pressure gradient sa < w, where
that lim,_,ov=0 and lim,_,,i*=0.

- o we = Tminfo? A2, (29)
E. Linearized flow in quasi-steady-state p

In order to solve the Navier-Stokes equation Bl), we  For gry <1 this means thaw,=(7/p)q? In this way, for
note that for a body force of small magnitude and with slowgy,4 Reynolds numbers, we get

temporal variation the fluid response is linear and the flow

will approximately be at steady state at each moment in time. 0=-Vp+ VNV +F, w<o, (30)

We begin by comparing the inertial terms on the left-hand

side(LHS) with the viscous terngsecond terrnon the right-  which is the resulting quasi-steady-flow problem which is
hand side(RHS). The body force has a characteristic fre- linear in the velocity field. Slip-velocity approaches usually
quencyw and two characteristic length scalgsandqg ™ for  rely on this equatior(see Ref[2] and references thergin
thex andy directions, respectively. Sincg essentially gives However, Eqs(30) and (273 can actually be solved exactly
a factor of w, and V essentially give9\51(g(+qey, we can with a solution given by

COZULL9) o2 an oG 05 cos 20y, + Gs(2a)sin2ay)e, (313

v(r,t) = * *
r.y Ulw/w +olw

coq2wt +
=U1M[— 2qxe*Pcod2qy)e, +{(1 - 2qx)e >™ - e o}sin(2qy)e,] + O(ghp),  (31D)
wlow +owlo
coq2wt + ¢) _qu< 1+G,(29) )
=- T s E— 2 + 2
p(r.0) == daqmp, 5~ e 1+ 2qu)2C°S( ay) +G,(0) (323
co2uwt+ o) [ _, e
==dqmi— | € “Pcod2qy) + [1+cod2qy)] | + O(g\p), (32b)
wlo +olw 4g\p
[
as may be verified by direct insertion. Above, 1 —
Aw) ~ Z—qmln{l,\"wcla)}. (34)
1-29np ool
Ga(k) = [1 —(2q}\D)2]2[1 —e o 72— (1 - 290 p)k] Even foro<w the conditionw < w, is not necessarily sat-
isfied. In fact, for the numbers in Table | we hawe< "
(33 wp SO at resonanced (o) =\ /o <1.
and

F. Flow and separation of length scales

As mentioned above the flow is typically analyzed by
Gy(K) = 1+ k}\De_%l_zq)x (33b) slip-velocity approaches and here we show how such an ap-
4g\p proach gives an asymptotic solution in full agreement with
the exact solution. We study the flow oveig scale at the
boundary first and then @* scale. For this boundary layer
have been introduced. As seen the flow decays exponentialbypproach, we assume that foe 3\p, we havev,~0. Solv-

over a length scale of Bywhenw < w.. When the frequency ing for the pressure and substituting into heomponent of
becomes comparable to or larger thaywe have competing  Eq. (30) we get

length scales since thév term introduces an additional
length scale (7/pw)*? which as mentioned becomes
(0! )Y2(1/0) for g\p<1. So in the above expressions for
v andp we expect that the spatial cutoff length changes from
(29)™ to A with with the prefactor

vy=vy,D(1 -e™) +O(ghp), X=3\p, (35

056306-5
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FIG. 2. The potentiakp, pres-
sure p, and velocity fieldv. (a)
shows a gray scale plot of the am-
plitude of the potential¢ as a
function of gx and qy, Eq. (25),

5 and (b) the pressurep, Eq. (39).
\ L-.1 Notice the period doubling in the
.-------:Z?"\:;-’::J pressure compared to the electric
Lol potential.(c) shows a snapshot of
the harmonically oscillating ve-
locity field v in the bulk, Eq.(38),
and (d) likewise in the Debye
layer, Eq.(35). The flow pattern
contains rolls, which are indicated
by contours of constant velocity
(dashed lines
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cof2wt+ o) . cally be handled by applying periodic boundary conditions to
ve(Y,t) = vlmSln(Z ay). (36)  the unit cell(e.g., 0<y<2x/q). However, due to the sym-
metry of Vg, the computational domain can be reduced to
In the limit x=3\p andghp <1 the velocityvs can be inter-  0<y<w/q with homogeneous Dirichlet or Neumann
preted as a slip velocity at the wall acting as a conveyor belpoundary conditions. For the direction our domain is cut
for the bulk fluid[see Fig. 2d)]. off at a distancex=67/q from the interface using Dirichlet
For x=3\p we have thafF is exponentially suppressed boundary conditions for the fields. Near the interface to the
and we solve Eq(30) together with Eq(3e) and the bound-  insulator, 0<x=<3\p, we employ a structured grid to resolve
ary condition the Debye layer. For the temporal evolution we employ the
FEMLAB time stepper directly starting from initial solutions at
V(r,ty=0=vs(y,t)ey. (37)  t=0 which are zero everywhere. The duration of the transient
depends on the inertia in the system, but typically the tem-

To lowest order igAp this gives poral harmonic state is fully evolved after a time of the order

co2wt+¢) (10-100w™L. For our simulations we have used the typical
Vo s € - 2gx cod2qy)e, values in Table | except for the modulation where we have
usedq'=10°%m and consequently’=w.=10° rad/s. For
+(1-2g9x)sin(2qy)e ], (38)  the external potential,,; we have used the imaginary part of

Eqg. (1) (which is zero att=0) with an amplitude 6V,

and <10 V and a driving frequency #6cw<10° rad/s.
cof2wt+¢) _, In order to directly compare our numerical results to the
p=-dqm._ =~ Pcog2qy). (39 linearized theory we normalize frequencies by the resonance

frequencyw’, velocities byv,, voltages by the thermal volt-
If we now substitute into Eq(3d) we get (RHS-LHS  ageVq, and capacitances ;.
x e +0(w/ wp) +O([ghp]?) which shows that Eqs(38) Figure 3 shows numerical results for the effective capaci-
and(39) are indeed excellent approximations to the full so-tanceCg [see definition in Eq(13a] as a function of the
lution of the nonlinear time-dependent Navier-Stokes equafrequency for varying amplitudeg, of the external voltage.
tion Eq. (3d) for x=3\p. For the incompressibility con- The dashed line shows the corresponding analytical result
straint Eq.(3e), our solution givesvV -v=0([g\p]?). In Fig.  from Eq. (230). As seen there is a good agreement between
2(c) we show a plot of the velocity field, E¢38), along with  numerical results and our analytical predictions evenVpr
the contours for constant velocity. >V where the Debye-Hiickel approximation is typically ex-
We note that in the limik= 3\ the exact solutions, Egs. pected to work poorly. We furthermore note that at low fre-
(31b) and(32b) reduce to Eqs(38) and (39) for the bulk. quencies RECeq} approache<, in full agreement with the
analytics and the log-log plot also reveals two distinct re-
gimes foro<w" andw> ". In fact, dissipation is maximal
exactly at the resonance frequencypredicted by the linear
In this section we present results from numerical finitetheory. The inset shows the relative error of the Debye-
element simulation§rFEMLAB) of the five coupled equations Hiickel approximation which at large voltages saturates at a
Egs. (3a—(3e), with the boundary conditions in Eq¢4a), value of the ordef1+6)™%, here equal to 0.09.
(4b), and(5)—(7). For simplicity we assume a low Reynolds  The linear theory predicts a harmonic velocity field with a
number so that we can neglect the inertial tgfmV)v in  vanishing time average and our numerical simulations con-
Eq. (3d). This provides full access to the temporal and spatiafirm this low-frequency dynamicsee maxd{v(r,t)} in Fig.
evolution of the physical quantities®, ¢, i*, v, andp. The  4(a)]. The corresponding solid line shows exact results
spatially periodic problentin the y direction would typi-  within the Debye-Hiickel approximatid20] and the dashed

V. FULL NUMERICAL SOLUTION

056306-6
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c  0.06 x first order perturbation theory we have obtained analytic so-
R e ACss w _ % . . .
Co Cor 0.0 o =01 lutions for the pressure and velocity fields of the electrolyte
1p-s-8-s IR N ' N and for the electric potential. Our analytical solution applies
. 002 x to the low-frequency Debye-Hlickel regime where the ampli-
A \:'\ xxxuxx” tude V, of the external potential is lower than the thermal
H’,a LY '{"1 1 0w voltage V1 and the driving frequencw is lower than the
Im{ceff} - . vr inverse response time of the electrolyig=o../ € (see Secs.
0.1¢ Co F O B0l "u, : IV Aand IV C). It should be noted that our analysis does not
¥ o W04 N e cover the special case of suddenly applied step voltages,
v N . where the system selects its own intrinsic time scale different
¥ X p~38 . b} .
o o Y AN from the external time scale &/[19].
N t gr36 ‘\\_ bR Furthermore, we have limited ourselves to the diffusive
0.01 ‘ : s regime where convection can be neglected corresponding to
001 01 b= 100 fliciently low drivi litude Vo<V, where V
e a sufficien ow driving amplitude,Vo<V, where V,
=./(1+8)nD/e is a convective voltagésee first paragraph

FIG. 3. The real and the imaginary parts of the normalized ef-of Sec. IV B; V~u,.€ in the Debye layer We have also
fective capacitanc€c(Vo, w)/Co versus the normalized frequency considered the low-frequency regime< o, where viscosity
ol " for four different values of the voltage amplitutg/Vy. The dominates over inertiésee Sec. IV E
dashed lines show the analytical results of the linear theory, Eg. Finally, we have considered the limit with the spatial
(230. The inset shows the relative deviatidmelow resonandeof — modulation being much longer than all other length scales in
the full numerical solution foCe(Vo)/Co from the Debye-Hiickel  he problem, i.e.qd<1 and q\p<1 (see Sec. IVE In
result as a function o¥/o/Vr. summary this means that the analytical studies of the effect

L. of Eq. (1) are valid in the limits
line shows(w/w +w"/w)™ as suggested by Eq38). As

expected the induced harmonic motion peaks at the reso- q < min{d™\5'}, (403
nance frequencyw” with a characteristic speed; [Eq.

(27b)]. However, in the high-frequency dynamics we observe o < mifwp, o}, (40b)
the coexistence of a small but nonvanishing time-averaged

component, & max{{v(r,t))}<v,. Figure 4a) shows Vg < min{Vy, V). (400

max {(v(r,t));} as a function of frequency for different ex-
ternal voltages. The corresponding solid line shows exacfs a main result we have supplied a proof for the validity of
results within the Debye-Hiickel approximatif20]. Figure the capacitor model. The full dynamics seems, however, not
4(b) shows a particular example of the time-averaged velocto be captured by the capacitor model. Taking the time aver-
ity field {v(r,t)).. age in Eqs(279 and(38) we get(F);=0 and(v),=0 (in full
agreement with the discussion in RE2]). In contrast, we
obtain (F);# 0 if we begin from Egs.(183 and (20) and
without expanding inw/ wp and g\p, the result being finite
We have analyzed the full nonequilibrium electrohydro-even in the zero-frequency limit. Somewhat similar results
dynamics of the Debye screening layer that arise in an aquevere reported in another nonequilibrium stud, though
ous binary solution near a planar wall when applying a spafor a different geometry. Naively, this observation could sug-
tially modulated ac voltagd/,codqy)€“! [Eq. (1)]. Using  gest thatv),# O contrary to the statement in R¢R]. How-

VI. DISCUSSION

1 T T T T T v 1.5
A%
B max{v(r,t)}/v1 o # i Ve .o .
ri et T ’ o . . \ .
. v o - =100 , —>~0.1
L + S~ O Vir ¥ [ ’ - - Vr ‘ v - - . kY 1 | qxT
+ % \_‘;Q_ ’ , ’ - - ~ ~ ) i l ‘ - - S N . \ v
T
0.1 + Vo ) , . - - ~ Y b i 4 ‘ - - - N . \ H1
e P T T S e I S A
y ’ » - - S \ [} i d 4 ¢ - - N \ \ '
Y r o - \ v 3 i i 4 ‘ L S Y
0.01 oo v b b oo dos
' Y ' . ¢ i i i [} 1 ) . f ' ' v
R L N N T oy
N “ o o o v i YN W w m e . » I
e e B P e e e v oy el el] o] el ea il0
1
Eﬂ' qy ki

FIG. 4. Numerical simulations of flowa) shows the maximal velocity of the harmonic flow mgx(r,t)} and the maximal velocity of
the time-averaged flow maXv(r,t)),}, both versus normalized frequency. The solid lines show exact results within the Debye-Hiickel
approximation[20] and the dashed line shows/o" +"/w)™ as suggested by Eq38). (b) shows an example of the time-averaged
velocity field (v(r ,t)).
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ever, by also averaging over thedirection we gekF,),,  complex expressiofnot shown agrees fully with Eq(43).

=0 suggesting thaby);,=0 in agreement with the symmetry At high frequencies we expect stationary vortices, Fig)4
arguments emphasized in REZ]. If the finite (F), does not  to coexist with the harmonic fluid motion illustrated in Fig.
give the fluid a directional flow globally, we might speculate 2(C), whereas at low frequencies the circulation vanishes and
that, at high frequencies, it makes the fluid circulate inWe are left with the pure harmonic motion. Our time-
nonoscillating vorticegsee Fig. 48)], whereas the fluid is at dependent finite-element simulations in Fig. 4 support this
rest at zero frequency, despite), being finite. The solution ~Picture, and similar time-averaged flow in a slightly different
to this apparent contradiction lies in the pressure, which willd€0metry has been observed both experimentally, theoreti-

compensate the body force at low frequencies. We can exeally, and numerically4-6].

plicitly show that the time-averaged body force can be writ-
VIl. CONCLUSION

ten as
- 2 Our results provide the theoretical underpinning of the
(P02 = Vpe(r) + Ollw/wpl) “D capacitor model widely used in the literaty&e-4,6,7,15,19
where and form a firm starting point for future studies of electroki-
1\ netic pumps and mixers driven by spatially mod_ulated sur-
Pe(r) = 4= 0 face potentials. In general for large valueséoive find that
[ghpcoshqd) + (eled) V1 + (ghp)sinh(qd) ] the Debye-Huckel approximation works well (i:‘ven at el-
s evated voltagefagreement within less thad +6)~*] where
x e 2 @M hocod(qy), (428 it is typically expected to work poorly. However, our non-
5 5 equilibrium approach has also revealed interesting shortcom-
i (1 +&)<Ceﬁ(0)) 1+(ghp) ings in the capacitor approach for high-frequency dynamics
4 C, Co (ghp)? where static vortices appear along with the harmonic rolls
— also predicted by the capacitor model.
X @ 2VIHap) Moo (qy). (42b)
The form of Eq.(41) suggests that ACKNOWLEDGMENTS
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