Mechanistic modelling of a full-scale bio-catalytic methanation reactor

Flores-Alsina, Xavier; Pereira Rosinha Grundtvig, Ines; Junicke, Helena; Lardon, Laurent; Gernaey, Krist V.

Publication date: 2019

Publisher's PDF, also known as Version of record

Mechanistic modelling of a full-scale bio-catalytic methanation reactor

Xavier Flores-Alsina¹, Ines Pereira Rosinha Grundtvig², Helena Junick³, Laurent Lardon², Krist V Gemaey¹

¹ Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
² Electrochaea.dk ApS, Hvidovre, Denmark
³ Department of Chemical Engineering, University of Southern Denmark, Odense, Denmark

Motivation
Electricity production by wind and solar power is growing rapidly in recent years, but their fluctuating character accordingly increases periods where electricity production exceeds demand. Rather than e.g. temporarily reducing production from wind turbines, the renewable electricity may be valorized by powering biogas upgrading.

Biocatalytic reactor
The reactor is part of a technology that converts, first, (1) electricity into hydrogen \((H_2)\) by means of water electrolysis. Next the \(H_2\) is biologically reacted \(2)\) with the carbon dioxide \((CO_2)\) coming from biogas to form pipeline grade methane \((CH_4)\) for direct injection into the existing natural gas grid.

Case study
The full-scale system is currently running at Avedare wastewater treatment plant (WWTP) in Hvidovre (Denmark) using biogas as \(CO_2\) feedstocks: 1) Anaerobic digester (Data set #1) and Biogas upgrade plant (Data set #2)

Steady state simulations (Data set #1) (Anaerobic digester)
Steady state simulations (Data set #2) (Biogas upgrade plant)

Dynamic simulations (Data set #1) (Anaerobic digester)
Dynamic simulations (Data set #2) (Biogas upgrade plant)

Future work
1) addition of \(H_2S\) data and how this affects growth \(/\) inhibition of archaea, 2) pressure gradients within the reactor, 3) improved mass transfer model to have a more realistic view of the gas dissolution/stripping phenomena, 4) evaluation of different loading conditions to test reactor capacity

Mathematical model
The main biochemical processes are based on the Anaerobic Digestion Model No 1 (ADM1) (Batstone et al., 2002) with the following modifications:
1) An advanced weak acid base chemistry model (Flores-Alsina et al., 2015)
2) \(Gas(Gas)\) flows considered as inputs
3) \(V_{inj}\) variable \((\dot{Q}_in\neq \dot{Q}_out)\)
4) Metabolic water production as a result of hydrogenotrophic methanogenesis

References

\[
CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O
\]