Grazing-incidence X-ray ptychography for in situ studies of thin sub-monolayer films of nanoparticles

Slyamov, A. M.; Jørgensen, P. S.; Rein, C.; Odstril, M.; Silvestre, C. M.; Andreasen, J. W.

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Grazing incidence X-ray ptychography for \textit{in situ} studies of thin sub-monolayer films of nanoparticles

A. M. Slyamov1, P. S. Jørgensen1, C. Rein1, M. Odstrčil2, C. M. Silvestre3, J. W. Andreassen1

1. Technical University of Denmark, Department of Energy Conversion and Storage, 4000 Roskilde, Denmark
2. Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
3. Technical University of Denmark, DTU Nanolab, DK-2800 Kgs. Lyngby, Denmark

\section*{Introduction}
X-ray ptychography [1] is a scanning coherent diffraction imaging (lensless) technique that provides unlimited fields-of-view for the sample reconstruction and enables reconstruction of the generally unknown illumination function [2]. In ptychography a phase-retrieval algorithm plays the role of an image-forming lens by recovering the unknown phase numerically, using iterative algorithms [3]. Here, we present ptychographic imaging under grazing incidence as a technique suitable for investigation of surface properties of thin films. The grazing incidence configuration is of special interest for the study of sparse monolayers of nanoparticles that yield weak scattering signal in a conventional transmission configuration. The proposed method has a potential for \textit{in situ} studies of particle-substrate interactions in a gaseous environment, under elevated temperatures and will allow describing time-evolution of an inhomogeneous sample structure.

\section*{Grazing Incidence Ptychography}
In grazing incidence configuration, coherent X-ray scattering from substrate-supported nanostructures is measured below the critical angle of the sample substrate. The shallow incident angle provides a high interaction cross-section with the sample because of the large footprint and the total external reflection of the incident beam from the substrate.

\begin{equation}
\begin{aligned}
\alpha_s & \quad \text{incident wavevector} \\
\alpha_b & \quad \text{scattered wavevector} \\
\theta_i & \quad \text{angle of incidence} \\
\theta_r & \quad \text{angle of reflection} \\
\end{aligned}
\end{equation}

\textbf{Figure 1:} Schematic of grazing incidence ptychography.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1}
\caption{(a) Beam footprint on the sample at an incident angle of 0.27°, (b) illuminated part of the Siemens star phantom with an aspect ratio of 1.}
\end{figure}

Preliminary simulations show that reconstruction of the sample can be achieved by the proposed method using modified propagation of the exit wavefront from the sample plane to the detector [4].

\textbf{Figure 2:} (a) before and (b) after correction

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2}
\caption{Etched structure of an \textit{in situ} grazing-incidence X-ray scattering micro-reactor flow cell. The gas inlets (1) and (2), the bypass (3), the capillary to the mass spectrometer (4), 10 µm- thick entrance and exit windows (5) and (6), beam path without supporting pillars (7) and supporting pillars to avoid reactor chamber collapse when working at lower than ambient pressure (6) are labelled on the image. (b) Close-up of the 10 µm-thick Si entrance window and pillar structure of anodic-bonded closed reactor template before etching and dicing. (c) Schematic representation of the micro-reactor device [5].}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3}
\caption{Etched structure of an \textit{in situ} grazing-incidence X-ray scattering micro-reactor flow cell. The gas inlets (1) and (2), the bypass (3), the capillary to the mass spectrometer (4), 10 µm- thick entrance and exit windows (5) and (6), beam path without supporting pillars (7) and supporting pillars to avoid reactor chamber collapse when working at lower than ambient pressure (6) are labelled on the image. (b) Close-up of the 10 µm-thick Si entrance window and pillar structure of anodic-bonded closed reactor template before etching and dicing. (c) Schematic representation of the micro-reactor device [5].}
\end{figure}

\section*{Experimental results}
The experiment was performed at the cSAXS beamline of the Swiss Light Source (SLS) facility in Switzerland. Figure 4 shows part of a Siemens star phantom that corresponded to the imaged area used for ptychographic reconstruction along with an amplitude of the reconstructed Siemens star and reconstructed illumination function [5]. (under a grazing incidence angle of 0.27 degrees, both corrected with respect to the aspect ratio of the reconstruction pixel size).

\textbf{Figure 3:} Tilted plane correction of a diffraction pattern: (a) before and (b) after correction

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3}
\caption{Etched structure of an \textit{in situ} grazing-incidence X-ray scattering micro-reactor flow cell. The gas inlets (1) and (2), the bypass (3), the capillary to the mass spectrometer (4), 10 µm- thick entrance and exit windows (5) and (6), beam path without supporting pillars (7) and supporting pillars to avoid reactor chamber collapse when working at lower than ambient pressure (6) are labelled on the image. (b) Close-up of the 10 µm-thick Si entrance window and pillar structure of anodic-bonded closed reactor template before etching and dicing. (c) Schematic representation of the micro-reactor device [5].}
\end{figure}

\section*{Future work}
Future improvements to the method will include grazing incidence ptychographic tomography for achieving isotropic resolution in object reconstruction. This requires better alignment of the measured projections, higher precision in the sample motion, and a new design of the reactor chamber for \textit{in situ} studies.

\section*{Acknowledgments}
This study was supported by the Marie Sklodowska-Curie Innovative Training Network MUMMERING (Multiscale, Multimodal, Multidimensional imaging for Engineers, Funding through the EU research programme Horizon 2020 and by the Ministry of Higher Education and Science (DANSCATT, grant 7055-00078). The authors would like to acknowledge the support of the staff of the NanoMAX beamline at the MAX IV Laboratory, O. Carbone, A. Björling, and A. R. Fernández and of the cSAXS beamline at the Swiss Light Source, A. Diaz. The authors thank O. Hansen, C. D. Damsgaard, and B. Chong from DTU Nanolab who provided best structures for the experiment.

\textbf{References}