Nano structuring of silicone elastomers for optical applications

Yu, Liyun; Eriksen, Sofie Helvig; Kristensen, Anders; Skov, Anne Ladegaard

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nano structuring of silicone elastomers for optical applications

Liyun Yua, Sofie Helvig Eriksen\textdagger, Anders Kristensenb and Anne Ladegaard Skova\textdagger

a Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, S\o ltofts Plads 227, 2800 Kgs. Lyngby, Denmark;
b Department of Health Technology, DTU, B
3
sheds Plads 344, 2800 Kgs. Lyngby, Denmark

Abstract

Color pixels composed of plasmonic nanostructures provide a highly promising approach for new display technologies, capable of vivid, robust coloration and incorporating the use of low-cost plasmonic materials.[1] Silicone elastomers, usually in the shape of polydimethylsiloxane (PDMS) elastomers, are commonly used to replicate structures mainly on the micro scale but recently also on the nano scale. PDMS dielectric elastomers are promising materials and have the potential to be used in novel applications, especially due to the ability to be formed into complex shapes and still provide actuation.[2] This work deals with the development of PDMS based silicone elastomers with the ability to easily replicate structures on the nano scale of the silicon (Si) stamps in order to achieve the color tuning for potential optical applications.

Keywords: silicone, PDMS elastomer, plasmonic color, replicate nanostructure, optical applications

1. Introduction

Silicone elastomers with nano structures have been used for waveguides (Fig.1). Nano structures covered with metal (e.g. silver) cause plasmonic colors. A plasmonic array device changing color by mechanical deformation has been fabricated (Fig.2)[1]

Figure 1. An illustration of a waveguide.

Figure 2. Working principle of the stretchable plasmonic device. Top: (a, b, c) color change of the device under different stretching conditions. Bottom: corresponding schematic of the nanostructure array.

2. Experimental

Materials

Mold: Si stamp
PDMS elastomer: Sylgard 184 from Dow Corning

Preparation

Figure 3. Fabrication process of PDMS reproduction with replicate nanostructures on the Si stamp.

Color tuning

Mechanical deformation

Figure 7. Color tuning via vertical stretching.

Electrical deformation

Figure 8. Color change via electrical actuation.

3. Results

3.1 Appearance

(a) (b) (c)

Figure 4. The Si stamp shows reflection colors from different angles (a). PDMS reproduction shows reflection colors from different angles (b). PDMS reproduction shows plasmonic color observed perpendicularly (c).

3.2 Structure

(a) (b) (c)

Figure 5. The Si stamp with nanopillar array (a), PDMS reproduction (b), PDMS reproduction after silver deposition (c).

3.3 Morphology

(a) (b) (c)

Figure 6. SEM images of the top surface (a, b) and cross-section (c) of the PDMS reproduction.

Table 1. Dimension parameters of the Si stamp and PDMS reproduction.

<table>
<thead>
<tr>
<th></th>
<th>Si stamp</th>
<th>PDMS reproduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillar diameter (nm)</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>Pillar spacing (nm)</td>
<td>400</td>
<td>340</td>
</tr>
<tr>
<td>Pillar height (nm)</td>
<td>200</td>
<td>60</td>
</tr>
</tbody>
</table>

4. Conclusions

This work investigated the fabrication methods to create a dielectric PDMS elastomer embedded with nanostructures. After obtaining the PDMS reproduction, the surface with reflection and plasmonic colors can achieve color tunable if the array structure of the nanopillars is altered through the mechanical or electrical deformation. The color change response depends on the mechanical and dielectric properties of the PDMS elastomers. This design strategy has the potential to open the door for next-generation flexible photonic devices for a wide variety of visible-light applications.

Acknowledgments

The authors gratefully acknowledge the financial support of InnovationFonden.

References