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We show how to create maximal entanglement between spectrally distinct solid-state emitters embedded
in a waveguide interferometer. By revealing the rich underlying structure of multiphoton scattering in
emitters, we show that a two-photon input state can generate deterministic maximal entanglement even for
emitters with significantly different transition energies and linewidths. The optimal frequency of the input
is determined by two competing processes: which-path erasure and interaction strength. We find
that smaller spectral overlap can be overcome with higher photon numbers, and quasimonochromatic
photons are optimal for entanglement generation. Our work provides a new methodology for solid-state
entanglement generation, where the requirement for perfectly matched emitters can be relaxed in favor of
optical state optimization.
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Quantum technologies promise dramatic improvements
in computing and communication by utilizing quantum
entanglement between qubits [1]. Although many promis-
ing quantum technology architectures have emerged over
the past two decades, none are free from the practical
challenges presented by high-fidelity quantum control and
scalability. For example, superconducting circuit imple-
mentations enjoy excellent coherence properties but oper-
ate slowly [2], while trapped ion qubits can be prepared
with almost unit fidelity but are difficult to scale [3]. Solid-
state architectures, such as optically coupled spin systems,
compete on speed and scalability. They include semi-
conductor quantum dots and nitrogen-vacancy centers.
Large optical nonlinearities in solid-state systems are
now very common [4–6], and solid-state emitters are
readily integrated into complex photonic structures, further
enhancing the light-matter interaction [7]. However, there
are many challenges still to overcome. For example, charge
noise and phonon scattering have limited the size of the
optical nonlinearities observed thus far [4].
Another major drawback to solid-state emitters is that the

central energies and lifetimes of their transitions are highly
dependent on the fabrication process, and vary significantly
both across and within samples [8]. Known methods for
entangling solid-state qubits require emitters with identical
energies to facilitate path-erasure techniques [9,10]. This
adds a practically insurmountable overhead to the process
of matching multiple solid-state qubits for creating large
entangled states [11]. Stark shifting and strain tuning the
emitter transitions has been employed to tune solid-state
emitters onto resonance [12–14], but this requires a sub-
stantial technical overhead, and arbitrary emitters in a
sample cannot in general be tuned onto resonance. Here,
we propose a process for generating entanglement that is

robust against spectral variations in the emitters’ transition
energies and linewidths. We show that photons, linear
optics, and photon counting suffice to create deterministic
entanglement between imperfectly matched emitters,
revealing a rich underlying structure of multiphoton scat-
tering off two nonidentical emitters. While many chal-
lenges remain, this work removes a major obstacle to a
scalable solid-state quantum technology architecture.
Our setup is shown in Fig. 1. Two solid-state emitters

each have an L-type level structure, with two stable low-
lying spin states (j↑i, j↓i), and a dipole transition that

FIG. 1. Waveguide Mach-Zehnder interferometer with emitters
embedded at positions 1 and 2, and with L-type level structures
shown in the inset. The excited state jei is coupled to a spin qubit
state (e.g., j↑i) with transition energy Eα (α ¼ 1, 2), circular
polarization, and linewidth Γα. The emitters are placed off axis in
the waveguide at c points, such that circularly polarized light
scatters only in the forward direction. The loss rate from the
guided mode is γα. Fock states jn;mi are injected into the
interferometer, and detectors D1 and D2 record a photon number
detector signature ðp; qÞ.
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couples a spin state to an excited state jei. The transition
energy for emitter α ¼ 1, 2 is Eα, and the polarization is
circular due to selection rules. The emitters are initially
prepared in the product state ðj↑i þ j↓iÞðj↑i þ j↓iÞ=2
and embedded in a waveguide Mach-Zehnder interferom-
eter at c points, where perfect correlation between propa-
gation direction and circular polarization occurs [15].
Consequently, the emitters scatter circularly polarized light
only in the forward direction, as was demonstrated recently
using semiconductor quantum dots under an applied
magnetic field [16–19]. For a lossless waveguide, the
emitter will impart a π-phase shift to each photon that is
on resonance with the transition [20–23]. The input to the
interferometer is a two-mode Fock state jn;mi, and the
detectors D1 and D2 produce classical signatures ðp; qÞ
indicating the presence of p and q photons, respectively.
Assuming the emitters are identical, a single monochro-

matic resonant photon injected into either one of the input
arms of the interferometer will scatter from one of the
emitters, and after the final beam splitter the light-matter
degrees of freedom are in the multipartite entangled
state ðjΦ−i ⊗ j1; 0i − jΨ−i ⊗ j0; 1iÞ= ffiffiffi

2
p

, where j0; 1i
and j1; 0i is the two-mode single-photon state at the
interferometer output. A photon detector signature (1,0)
or (0,1) heralds the maximally entangled spin state jΦ−i ¼
ðj↑;↑i − j↓;↓iÞ= ffiffiffi

2
p

or jΨ−i ¼ ðj↑;↓i − j↓;↑iÞ= ffiffiffi

2
p

. This
method can be made robust to photon loss provided that the
emitter detuning is only a fraction of the emitter linewidth.
Mahmoodian et al. showed how this can form a building
block for distributed quantum computing [24].
In practice, both the linewidths and transition energies

vary significantly between solid-state emitters, and it was
generally assumed that this prohibits the creation of perfect
entanglement using linear optics and photodetection. In this
case, the input photon can no longer be resonant with both
emitters simultaneously. With ℏω the single-photon energy,
Γα the unidirectional emission rate of emitter α ¼ 1, 2 into
the waveguide, and γα the corresponding coupling to
nonguided modes, the scattering process is described by
the transmission coefficient [25]:

tαðωÞ ¼
ℏω − Eα − iℏðΓα − γαÞ=2
ℏω − Eα þ iℏðΓα þ γαÞ=2

: ð1Þ

We characterize the emitter loss by βα ≡ Γα=ðΓα þ γαÞ. For
nonzero emitter detuning δ≡ E2 − E1, tαðωÞ ceases to be a
π-phase shift, and for βα < 1, tαðωÞ is no longer a pure
phase shift. The setup then does not create maximally
entangled states deterministically anymore. Nevertheless,
we will now demonstrate how tailoring the optical input
state jn;mi into the Mach-Zehnder interferometer leads to
deterministic maximal entanglement between two spec-
trally distinct emitters.
In general, a detector signature ðp; qÞ indicates that the

two emitters are in a mixed entangled state. We use the

concurrence CðρÞ for a two-qubit state ρ to quantify this
entanglement [26]. Each signature ðp; qÞ occurs with
probability Prðp; qÞ and results in an emitter state ρðp;qÞ,
leading to a concurrence Cðρðp;qÞÞ. We define the average
concurrence as

Cav ≡
X

ðp;qÞ
Prðp; qÞCðρðp;qÞÞ: ð2Þ

This is an appropriate figure of merit, since it provides a
lower bound for the amount of entanglement expected from
a given experiment without postselection. The entangle-
ment in the two-qubit state can be increased by discarding
measurement outcomes corresponding to below-average
concurrences. This comes at the expense of the rate of
entanglement generation.
The amount of entanglement that can be generated

between the two spectrally distinct emitters with a single
probe photon is shown in Fig. 2. The single-photon
protocol is analyzed using linear optics transformations

FIG. 2. Single-photon (e.g., j1; 0i) entanglement generation for
a pair of detuned L-type emitters with equal linewidth Γ and
energies E1 and E2 ¼ E1 þ δ, where δ ¼ 1.0 μeV. (a) Lorentzian
spectra for emitters with energies E1 in arbitrary units (a.u.) (solid
lines), E2 (dashed lines), and emitter linewidths 0.66 μeV (blue
lines), 1.0 μeV (red lines), and 2.0 μeV (purple lines). (b) Average
concurrence versus monochromatic single-photon energy without
loss (β ¼ β1 ¼ β2 ¼ 1, solid lines) and with loss (β ¼ 0.9,
dashed lines). Line colors as in (a). (c) Location of optimum
single-photon energy ℏωopt for maximum Cav as a function of
emitter linewidth Γ for a monochromatic input without loss (solid
line) and with β ¼ 0.9 (dashed line). (d) Cav for Lorentzian (solid
line), Gaussian (dotted line), and square (dashed line) single-
photon envelopes as a function of FWHM pulse width σ. Here,
ℏω ¼ ðE1 þ E2Þ=2 and Γ ¼ 1.0 μeV. The vertical line indicates
the linewidth of the emitters.
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[24], while a multiphoton input requires taking into
account the nonlinear nature of the interaction [22] [see
Supplemental Material (SM) for details [27] ]. As expected,
for spectrally distinct emitters the average concurrence does
not reach its maximal value [Fig. 2(b)]. The amount of
entanglement is determined by two competing processes.
On the one hand, which-path information for the probe
photon must be erased, while at the same time the phase
shift induced by the photon scattering event must be
maximized. Tuning closer to either emitter increases the
relative phase shift but also imparts a degree of path
information onto the probe, as the light-matter interaction
is now stronger for one of the emitters. For emitters with
finite detuning and linewidth it is not obvious which photon
energy maximizes the average concurrence. Three emitter
linewidths are shown in Fig. 2(a), and Fig. 2(b) shows the
corresponding Cav. The linewidths shown correspond to
emitters with 1, 0.66, and 0.33 ns lifetimes, typical of
semiconductor QDs benefiting from modest Purcell
enhancements [28]. Increasing the linewidth of the emitters
leads to a larger spectral overlap, thereby erasing some of
the which-path information and increasing Cav. Figure 2(c)
shows the optimal frequency of the input photon that
maximizes Cav. For narrow linewidths it is preferable to
tune the photon energy away from the mean emitter energy
(ℏω − E1 ¼ 0.5 μeV for δ ¼ 1.0 μeV), and towards reso-
nance with one of the emitters. Though this reduces the
concurrence in the state heralded by a click at detector D2,
it does increase the probability of a successful scatter-
ing event.
One may expect that a photon with a wide frequency

bandwidth that overlaps with both emitters will improve the
entanglement generation. Figure 2(d) shows the average
concurrence for a single probe photon with Lorentzian,
Gaussian, and square spectral profiles, centered at
ℏω ¼ E1 þ δ=2, as a function of the photon bandwidth.
We find that increasing the bandwidth of the input photon
only degrades the average concurrence, and a narrow band
probe is always preferable. We attribute this to the reduced
temporal extent of the photon at larger bandwidths, which
increases the probability of exciting the emitter, and thus
the fraction of light emitted incoherently through sponta-
neous emission. This reduction is particularly noticeable
for a Lorentzian wave packet, where a close spectral match
with the emitter increases the excitation probability. We
conclude that for given emitter detuning and linewidths, the
maximum Cav of the single-photon case is limited by the
competing requirements of maximizing the induced phase
shift and path erasure.
Next, we consider whether two photons can increase the

average concurrence. Consider an input state of two
identical monochromatic photons jn;mi ¼ j1; 1i entering
the interferometer. They will evolve into a two-photon
NOON state ðj2; 0i − j0; 2iÞ= ffiffiffi

2
p

via Hong-Ou-Mandel
interference on the first beam splitter [29,30] and interact

with the emitters. Entanglement is then heralded by three
detector signatures: two photons in D1, two photons in D2,
or a coincidence count. Using two probe photons leads to a
rich structure in the average concurrence, and it is now
possible to reach deterministic maximal entanglement for
spectrally distinct emitters with finite linewidth. The reason
for the two-photon advantage can be determined via
inspection of Fig. 3(a), where Cav is shown as a function
of the detuning between the photon energy and the
transition energy of the first emitter. In the current example
where δ ¼ 1.0 μeV, maximum entanglement fidelity
occurs for emitters with linewidths of 1.0 μeV and input
photons with energy ℏω ¼ E1 þ δ=2. Comparing this value
to Fig. 2(a), this input energy corresponds to the point
where the emitter spectra are at half of their maximum
intensity. For quasimonchromatic input states, the imparted
phase shift is additive in photon number; i.e., for the

FIG. 3. Two-photon (i.e., j1; 1i) entanglement generation for a
pair of detuned L-type emitters with equal linewidth Γ and
energies E1 and E2 ¼ E1 þ δ, where δ ¼ 1.0 μeV. (a) Average
concurrence versus monochromatic two-photon energy. The
emitters have equal linewidth of 0.66 μeV (blue line), 1.0 μeV
(red line), and 2.0 μeV (purple line). (b) Cav for Lorentzian (solid
line), Gaussian (dotted line), and square (dashed line) single-
photon envelopes as a function of FWHM pulse width σ. Here,
ℏω ¼ ðE1 þ E2Þ=2 and Γ ¼ 1.0 μeV. The vertical line indicates
the linewidth of the emitters. (c) Average concurrence as a
function of β ¼ β1 ¼ β2 for a monochromatic two-photon pulse
(solid line) and monochromatic single-photon pulse (dashed
line); both emitters have linewidths of 1.0 μeV. (d) Average
concurrence as a function of normalized emitter detuning δ=Γ for
two monochromatic photons (red lines) and a single monochro-
matic photon (blue lines). Solid lines represent β ¼ 1 and dashed
lines represent β ¼ 0.9. The optimal photon frequencies for
various coupling and detuning ratios are discussed in the
Supplemental Material [27].
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two-photon case, each photon imparts a π=2 phase shift to
the emitter and therefore achieves the required π-phase
shift. We consider more general emitter detuning and
linewidth examples in Fig. 4 and in the Supplemental
Material [27].
We study again the effect of broadband probe photons on

the entanglement generation process. In this case the phase
shift is no longer additive in photon number, since the
interaction becomes nonlinear. When two photons are
present, the emitter may be excited, which opens a pathway
for stimulated emission, such that the coherence of the
wave packet is maintained. Competition between sponta-
neous and stimulated emission processes leads to the
nonmonotonic behavior in Cav presented in Fig. 3(b).
The two-photon interaction strength increases when the
optical pulse width is broadened to the scale of the emitter
linewidth [22]. Although an increased bandwidth generally
reduces Cav, a local maximum appears close to the emitter
linewidth. We attribute this to the stimulated emission
process, which is maximized for photons that are closely
matched to the emitters’ spectral profile. Figure 3(c) shows
the dependence of Cav on the loss rate β. In the regime
where it is preferable to tune the input photon to the average

emitter energy, the effect of reducing the beta factor of
either emitter causes the average concurrence to fall in the
same manner as if both beta factors were reduced. In the
alternative regime, where it is optimal to tune onto one
emitter, a difference in beta factors introduces an asym-
metry in the behavior of the average concurrence and it
becomes preferable to tune onto the emitter that is more
efficiently coupled to the waveguide. The two-photon
entanglement generation process outperforms the single-
photon process for all values of β. In Fig. 3(d) we show how
two-photon input states can achieve a significant increase in
Cav over single photons for larger detunings.
In certain regimes the two-photon process is capable of

generating maximal entanglement between spectrally
distinct emitters where the single-photon process fails.
We studied the robustness of this effect with respect to
the system parameters. In Figs. 4(a) and 4(b) we show the
maximum Cav (optimized over photon frequency ωopt) for
the one- and two-photon input states as a function of the
emitter detuning and the emitter linewidth ratio. The single-
photon case outperforms the two-photon case if the emitters
are spectrally collocated, or if one of the emitters significant
overlaps the other, however narrow the linewidth. Crucially,
however, by exploiting the multiphoton additivity of the
phase shift, a two-photon process can efficiently generate
entanglement for any finite detuning without requiring
arbitrarily small emitter lifetimes. The converse of this is
also true: for any combination of linewidths Γ1 and Γ2 there
exists a nonzero emitter detuning which creates determin-
istic maximal entanglement given the optimal two-photon
input state. In practice, this means a much greater freedom
in matching solid-state emitters for entanglement gener-
ation in a Mach-Zehnder interferometer than previously
thought.
We extended the entanglement generation process to

monochromatic jn;mi Fock states into the interferometer.
In Figs. 4(c) and4(d)we show themaximumCav as a function
of the emitter detuning and the emitter linewidth ratio for
input states j2; 1i and j2; 2i, respectively (formore examples,
see the SM [27]). There is a marked improvement in the
entanglement generation over the single- and two-photon
processes, with larger areas of parameter space achieving a
near unityCav. Remarkably, this indicates that awide range of
imperfections in the fabrication of two identical emitters can
be overcome by optical state optimization. Note that the
j2; 1i case inherits features from both the j1; 1i and j1; 0i
processes. It therefore performs well for both spectrally
collocated emitters and those with finite detuning. A similar
compound structure is visible in Fig. 4(d), where an input
state j2; 2i shows a double two-photon structure compared to
the j1; 1i input in Fig. 4(b). A clear trend emerges, where
larger spectral emitter detuning can be overcome by higher
number input states jn;mi (see SM [27]).
There are several practical challenges turning this

entanglement generation process into a useful quantum

FIG. 4. Maximum average concurrence for different photon
number input states injected into the interferometer. The emitter
detuning δ and the linewidth Γ2 are both normalized to Γ1, and we
consider lossless waveguides (β ¼ 1). The input photons are
identical and monochromatic in the configurations (a) j1; 0i,
(b) j1; 1i, (c) j2; 1i, and (d) j2; 2i. The characteristic shapes in (a)
and (b) recur in (c) and (d), and are also found in higher photon
number input states jn;mi. The blue and red lines in (a) and
(b) correspond, respectively, to the solid blue and red lines in
Fig. 3(d).
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technology. First, a reduced coupling of the emitter to the
waveguide modewill reduce the phase shift imparted on the
photons, and therefore lower the average concurrence.
Second, the photons may be scattered out of the waveguide
mode or be lost in the detection process. However, the use
of fast, high-efficiency photon number resolving detectors
will mitigate this problem, and such detectors are actively
developed [31,32]. Third, the photons must be created in
tunable identical quasimonochromatic modes. There are a
number of ways this can be achieved over a wide frequency
range. Spontaneous parametric down-conversion (SPDC) is
inherently tunable [33,34] and frequency filtering will
create the optimal quasimonochromatic pulses as well as
remove unwanted frequency entanglement. The resulting
photon generation rate reduction can be mitigated using
multiplexing, which has been demonstrated for both SPDC
photon sources [35] and tunable quantum dot sources [36].
Alternatively, tuning of single-photon pulses is possible via
frequency conversion [37]. Finally, dephasing will have an
impact on the entanglement generation process. The
dominant dephasing mechanism for spin-doped solid-state
emitters is nuclear spin interactions [38]. While this
naturally leads to a random precession of the spin ground
state, there are a number of strategies based on dynamical
decoupling that may be used to suppress its impact [39–41].
In addition, solid-state emitters are subject to charge
fluctuations and phonon interactions. The former leads
to spectral wandering occurring on a microsecond
timescale, which may be overcome by operating the
process on shorter timescales [42]. Phonon scattering
leads to sidebands [43] that can be removed through
frequency filtering or by placing the emitter in an optical
cavity [44,45].
In conclusion, we presented a robust entanglement

generation mechanism between two solid-state qubits
embedded in a Mach-Zehnder interferometer. Entangling
techniques that use solid-state emitters are well known to
place very stringent requirements on the spectral identity of
the emitters [9]. Our approach overcomes these restrictions
by showing how to tailor multiphoton input states, miti-
gating a long-considered weakness of solid-state emitters.
We found that maximal deterministic entanglement
between increasingly distinct emitters is possible using
higher photon number input states, revealing a rich struc-
ture in multiphoton scattering from two emitters with
different energies and linewidths. Our work provides a
new methodology for solid-state entanglement generation,
where the requirement for perfectly matched emitters can
be relaxed in favor of optical state optimization.
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A. Fiore, Nat. Photonics 2, 302 (2008).

[32] R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V.
Giannini, S. A. Maier, and R. H. Hadfield, Nano Lett. 15,
819 (2015).

[33] D. N. Klyshko, A. N. Penin, and B. F. Polkovnikov, JETP
Lett. 11, 5 (1970).

[34] M. Tanida, R. Okamoto, and S. Takeuchi, Opt. Express 20,
15275 (2012).

[35] C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L.
Gaeta, Nat. Commun. 9, 847 (2018).

[36] H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X.
Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C.
Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and
J.-W. Pan, Nat. Photonics 11, 361 (2017).

[37] Q. Li, M. Davanço, and K. Srinivasan, Nat. Photonics 10,
406 (2016).

[38] I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B 65,
205309 (2002).

[39] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417
(1999).

[40] D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B.
Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and
Y. Yamamoto, Nat. Photonics 4, 367 (2010).

[41] A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D.
Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton,
Nat. Phys. 9, 570 (2013).

[42] A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C.
Delalande, P. Roussignol, R. Ferreira, and J. M. Gérard,
Nat. Phys. 2, 759 (2006).

[43] J. Iles-Smith, D. P. S. McCutcheon, J. Mørk, and A. Nazir,
Phys. Rev. B 95, 201305(R) (2017).

[44] T. Grange, N. Somaschi, C. Antón, L. De Santis, G.
Coppola, V. Giesz, A. Lemaître, I. Sagnes, A. Auffèves,
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