Brain changes induced by Electroconvulsive Therapy are broadly distributed

Ousdal, Olga Therese; Argyelan, Miklos; Narr, Katherine L.; Abbott, Christopher; Wade, Benjamin; Vandenbulcke, Mathieu; Urretavizcaya, Mikel; Tendolkar, Indira; Takamiya, Akihiro; Stek, Max L.

Published in:
Biological Psychiatry

Link to article, DOI:
10.1016/j.biopsych.2019.07.010

Publication date:
2019

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Brain changes induced by Electroconvulsive Therapy are broadly distributed

PII: S0006-3223(19)31543-4
DOI: https://doi.org/10.1016/j.biopsych.2019.07.010
Reference: BPS 13924

To appear in: Biological Psychiatry

Received Date: 28 February 2019
Revised Date: 14 July 2019
Accepted Date: 15 July 2019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Brain changes induced by Electroconvulsive Therapy are broadly distributed

Olga Therese Ousdal1, Miklos Argyelan2, Katherine L Narr3, Christopher Abbott4, Benjamin Wade5, Mathieu Vandenbulcke6,7,8, Mikael Urretavizcaya6,7,8, Indira Tendolkar9,10,11, Akihiro Takamiya12,13, Max L. Stek14,15, Carles Soriano-Mas6,7,16, Ronny Redlich17, Olaf B. Paulson18,19, Mardien L. Oudega14,15, Nils Ope17,20, Pia Nordanskog21, Taishiro Kishimoto12, Robin Kampe21, Anders Jorgensen22, Lars G. Hanson23,24, J. Paul Hamilton21, Randall Espinoza3, Louise Emsell5, Philip van Eijndhoven9,10, Annemieke Dols14,15, Udo Dannlowski17, Narcis Cardoner7,25,26, Filip Bouckaert5, Amit Anand27, Hauke Bartsch28,29, Ute Kessler30,31, Ketil J Oedegaard30,31, Anders M. Dale28,29,32, Leif Oltedal30,33 for GEMRIC

1Department of Radiology, Haukeland University Hospital, Bergen, Norway
2Center for Psychiatric Neuroscience at the Feinstein Institute for Medical Research, New York, New York
3Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, California
4Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
5Department of Geriatric Psychiatry, University Psychiatric Center KU Leuven, KU Leuven, Leuven, Belgium
6Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
7CIBERSAM, Carlos III Health Institute, Madrid, Spain
8Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
9Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
10Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
11Faculty of Medicine and LVR Clinic for Psychiatry and Psychotherapy, University of Duisburg-Essen, Germany.
12Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
13Center for Psychiatry and Behavioral Science, Komagino Hospital, Tokyo, Japan
14GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
15Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
16Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
17Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
18Neurobiology Research Unit, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
19Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
20Interdisciplinary Centre for Clinical Research (IZKF), University of Muenster, Muenster, Germany
21Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
22Psychiatric Center Copenhagen (Rigshospitalet), Mental Health Services of the Capital Region of Denmark, Copenhagen, Denmark
23Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
24Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.
25Department of Mental Health, University Hospital Parc Taulí-B3PT, Sabadell, Spain
26Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
Cleveland Clinic, Center for Behavioral Health, Cleveland, Ohio
Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California
Department of Radiology, University of California, San Diego, La Jolla, California.
Department of Clinical Medicine, University of Bergen, Bergen, Norway
NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
Department of Neurosciences, University of California, San Diego, La Jolla, California.
Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway.

Corresponding author
Olga Therese Ousdal, MD PhD
Department of Radiology, Haukeland University Hospital
Jonas Lies vei 65, 5021 Bergen, Norway
Tel: +47 55 97 24 00 / Fax: +47 55975140
Email: olgatherese.ousdal@gmail.com/olga.therese.ousdal@helse-bergen.no

Short title: Whole-brain structural changes following ECT

Keywords: Depression; ECT; MRI; Neuroimaging; Antidepressant; Biomarker; Brain

Number of words in the abstract: 246
Number of words in the main text: 3999
Number of figures: 4
Number of tables: 1
Number of supplemental files: 1
Abstract

BACKGROUND: Electroconvulsive therapy (ECT) is associated with volumetric enlargements of cortico-limbic brain regions. However, the pattern of whole-brain structural alterations following ECT remains unresolved. Here, we examined the longitudinal effects of ECT on global and local variations in gray matter, white matter and ventricle volumes in major depression as well as predictors of ECT-related clinical response.

METHODS: Longitudinal MRI and clinical data from the Global ECT-MRI Research Collaboration (GEMRIC) were used to investigate changes in white matter, gray matter and ventricle volumes before and after ECT in 328 patients experiencing a major depressive episode. In addition, 95 non-depressed control subjects were scanned twice. We performed a mega-analysis of single subject data from 14 independent GEMRIC sites.

RESULTS: Volumetric increases occurred in 79 of 84 gray matter regions of interests. In total, the cortical volume increased by (mean ± SD) 1.04 ± 1.03 % (Cohen's d=1.01, $p<0.001$) and the subcortical gray matter volume increased by 1.47 ± 1.05 % (d=1.40, $p<0.001$) in patients. The subcortical gray matter increase was negatively associated with total ventricle volume (Spearman’s rank correlation rho=-0.44, $p<0.001$), while total white matter volume remained unchanged (d=-0.05, $p=0.41$). The changes were modulated by number of ECTs and mode of electrode placements. However, the gray matter volumetric enlargements were not associated with clinical outcome.

CONCLUSIONS: The findings suggest that ECT induces gray matter volumetric increases that are broadly distributed. However, gross volumetric increases of specific anatomically defined regions may not serve as feasible biomarkers of clinical response.
Introduction
Depressive disorders are now the leading cause of years lived with disability worldwide (1), with an estimated 300 million people being affected (2). Electroconvulsive therapy (ECT) remains the most efficient therapy for severe and treatment-resistant depression, with rates and time to response surpassing other established treatments (3, 4). However, despite its efficacy, the therapy remains controversial. This may be related to its underlying neurobiological mechanisms being poorly understood, and reports of unwanted side effects. Identifying brain structural and functional correlates of clinical response is thus a major research goal, as it may help clarify the mechanisms of antidepressant action and also help identify patients which are most likely to benefit from ECT treatment.

Magnetic Resonance Imaging (MRI) studies in patients receiving ECT have consistently reported increased volume of the hippocampus (5-9) and surrounding structures (6, 10-12), complementing reports of reduced hippocampus volume in depression (13). Moreover, animal models of ECT have shown a dose-related increase in hippocampal neurogenesis (14), which is a stem-cell-containing niche in the adult human brain (15) (see (16)). Together, these findings are taken in support of the neurogenic theory of depression, which postulates that depression hinders neurogenesis in the hippocampus (17, 18), and that ECT may reverse this effect (12, 14). However, apart from inducing neurogenesis, electroconvulsive seizures (ECS- the animal model of ECT) also stimulate gliogenesis, angiogenesis and synaptogenesis (19-21), and these effects are not restricted to the medial temporal lobe. Furthermore, ECT-related changes in gray matter volume or density have been identified for numerous brain regions, including the basal ganglia (22), temporal pole (23), insula (23) and anterior cingulate cortex (10, 24, 25).

Jointly these findings suggest more widespread effects of ECT than initially proposed; however, the extent and distribution of changes vary considerably across studies. Moreover, although some studies report associations between volumetric changes and clinical response
(10, 12, 24), these findings have generally not been replicated in meta- or mega-analyses (5, 6, 8). The inconsistencies may arise due to variability in data acquisition and processing, in addition to clinical, treatment and demographic heterogeneity. With regards to data processing, various techniques for assessing structural changes exist. Some studies use voxel-based morphometry, while others use surface- or volume-based streams to generate maps of gray matter density, cortical thickness and surface area as well as subcortical volumes, respectively. These techniques likely differ in their anatomical structure identification (26, 27), and also their modeling of longitudinal changes. Moreover, the selective focus on a few regions of interest (ROIs) without taking the full brain into account, gives a fragmented understanding of the neurobiological effects of ECT.

To overcome some of these shortcomings, we established the Global ECT MRI Research Collaboration (GEMRIC (28)), which aims to identify consistent brain alterations associated with ECT treatment in depression. The goal of the present study was to delineate whole-brain volumetric changes following ECT using the GEMRIC database and extend our previous investigation of hippocampal volumetric changes following ECT (5). By performing a mega-analysis of single subject data, we tested if whole-brain structural changes are associated with ECT treatment number, mode of electrode placement and clinical outcome.
Methods and Materials

Study sample

Clinical and demographic characteristics of the total sample are detailed in Table 1. For information regarding each site’s demographic and clinical characteristics, we refer the reader to Supplementary Figure 1 and Supplementary Table 6. In the present study, data from 14 sites were included, totaling 328 patients (60.7% female, mean age ± SD: 54.6 ± 16.3) and 95 controls (60.0% female, mean age ± SD: 46.9 ± 14.6). Patients were scanned before (within one week before the first ECT session) and after treatment completion (typically within 1-2 weeks after the final ECT session of the index series), except for site number 11 which scanned before and after the completion of nine ECT sessions. Controls were similarly scanned at two time points. Depressive symptoms were rated by the Montgomery-Åsberg Depression Rating Scale (MADRS). For sites that had used the Hamilton Depression Rating Scale (HAM-D), a validated equation was used to convert HAM-D-17 to MADRS (29). Due to some missing data points, the final patient sample size used for the main statistical tests varied between N=282-322. ECT practice differed across sites in terms of electrode placement (right unilateral (RUL), bifrontal and bitemporal), ECT charge and pulse width (please see (28)). Moreover, most sites continued psychotropic medications during the ECT series. Medication information for each site is provided in Supplementary Table 1. All contributing sites received ethics approval from their local ethics committee or institutional review board. In addition, the centralized mega-analysis was approved by the Regional Ethics Committee South-East in Norway (#2013/1032).

Image acquisition and postprocessing

The image processing pipeline has been detailed elsewhere (5, 28). In brief, 3D T1 weighted structural images with a minimum resolution of 1.3 mm in any direction were acquired at both time points using 1.5 T (1 site) or 3 T (13 sites) scanners. Image processing and analysis were performed by a pipeline optimized to increase the statistical power of
detecting longitudinal cortical and subcortical anatomical change. Raw DICOM images and clinical / demographic information for individual patients and controls were transferred to a centralized Data Portal (30) for common analyses. Images were corrected for distortions caused by scanner specific non-linear gradient warp (31) and registered to a common atlas space and resampled to an isotropic 1 mm3 spatial resolution. Cortical and subcortical segmentations were performed by FreeSurfer version 5.3, and included parcellation of 66 (33 left and 33 right) cortical gray matter regions of interest (ROIs) (based on the Desikan-Killiany atlas (32)) in addition to the two (left and right) cerebellar cortical gray matter and 16 (8 left and 8 right) default FreeSurfer subcortical gray matter regions. Next, Quarc (1) was used for unbiased estimation of volume change (dV) from pre- to post-treatment in all ROIs. In addition to the volume change of each separate region, the total volume changes of four main tissue compartments (ROI$_{tc}$); i.e. cortical gray matter, subcortical gray matter, white matter and total ventricle volume, were estimated. We used the Total ventricle volume from FreeSurfer, which consists of right and left lateral, 3rd and 4th ventricles, to estimate the volumetric changes of the ventricles. For the remaining three tissue compartments, volumetric changes were calculated using weighted means:

$$ROI_{tc} = \frac{\sum_{i=1}^{n}(vol_{baseline} \times vol_{change})}{\sum_{i=1}^{n}vol_{baseline}}$$

where n was the number of ROIs included in the given ROI$_{tc}$ and vol$_{baseline}$ and vol$_{change}$ were the baseline volume and volume change for the ith ROI. The ROI$_{tc}$ for 1) Cortical gray matter consisted of left and right cortical and cerebellar gray matter volume, while the ROI$_{tc}$ for 2) Subcortical gray matter included the volumes of left and right thalamus proper, caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens and ventral diencephalon. Finally, the ROI$_{tc}$ for 3) Total white matter included the volumes of left and right subcortical
and left and right cerebellar white matter. The quality of the whole-brain segmentation was ensured by using procedures adapted from the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium (http://enigma.usc.edu/) (35). Further details on the quality control procedure can be found in the Supplement.

Statistical Analyses

Statistical analysis was performed with the R software package, version 3.4.0 (R Core 36). Slopes of linear models are reported with ± SE, while all other results are reported as mean ± SD. Our first goal was to investigate the distribution of structural brain changes following ECT. Thus, we examined group differences in volumetric change scores for the four major tissue compartments (cortical or subcortical gray matter, white matter or the ventricles) using general linear models. A binary indicator of diagnosis (patients vs controls) was the predictor of interest. In addition, all models were controlled for age, sex, site and the respective baseline volumes. To further delineate the anatomical distribution of the gray matter changes, we investigated each of the 84 gray matter regions of interest (ROIs; 33 left and 33 right cortical, 8 left and 8 right subcortical, left and right cerebellum gray matter) separately using the same statistical framework detailed above. Due to some sites not providing healthy controls, we also investigated volumetric changes of all 84 ROIs and the 4 ROIs in patients and healthy controls separately, and the results of these analyses are provided in the Supplement. Effect size estimates are reported as Cohen's d metric, calculated as dv/SD where dv represents the mean change estimate and SD the standard deviation for each anatomical ROI or tissue compartment. Throughout the manuscript, we report false-discovery rate (fdr) corrected p-values (p_{fdr}<0.05).

To address if number of ECT sessions influenced the volumetric changes, we performed separate general linear models using the volumetric change of the four main tissue compartments as the outcome values and number of ECTs as the predictor of interest.
Number of ECT sessions was weighted similarly regardless of electrode placement across the sites. The analyses controlled for age, sex, site, the respective baseline volumes and baseline depression scores. To control for nonlinear effects of ECT, we also included the number of ECT sessions squared as a covariate.

In order to examine the effect of electrode placement, we split the patients into subjects receiving RUL (N=186) vs bilateral (BL, N=89) (BL; bifrontal (N=20) and bitemporal (N=69)) stimulation only and tested for group differences in the left or right hemispheric cortical and subcortical gray matter changes using two-sample t-tests. Patients switching mode of electrode placement during the course of treatment were excluded. We also investigated if number of BL vs. RUL ECTs affected the left hemispheric changes, by fitting separate linear models for the left cortical and subcortical gray matter ROI\(_c\), and subsequently testing the difference in slopes between RUL and BL using the function linearHypothesis in R (car-package, version 2.1-6). The analyses controlled for age, sex, site, baseline depression score and the respective baseline volumes. Finally, we examined the association between treatment response and the gray matter changes. In separate general linear models, we tested the association between clinical response (changes in MADRS pre-post ECT) and volumetric change of each gray matter ROI (i.e. the 84 anatomical ROIs and the two gray matter ROI\(_c\)s) while controlling for age, sex, site, baseline depression score, number of ECTs, number of ECTs squared and the respective baseline volumes.
Results

The mean depression rating (MADRS score) of patients decreased from 34.0 ± 8.3 at baseline to 14.4 ± 10.9 after treatment ($t_{319} = 27.24$, $p<0.001$). Moreover, 63.1 % of the patients were classified as responders (>50% symptom reduction) and 46.6 % of the patients were categorized as remitters (MADRS<10 following the index series). Clinical and demographic characteristics of the responders and the remitters are detailed in the Supplement (Supplementary Results).

In our primary analyses, we assessed group differences in volumetric changes across four major tissue compartments while controlling for age, sex, site and the respective baseline volumes. The analyses revealed significant volumetric enlargements of the cortical ($t_{376} = 7.40$, $p_{fdr}<0.001$, Cohen's d for patients = 1.01) and the subcortical ($t_{372} = 11.70$, $p_{fdr}<0.001$, $d = 1.40$) gray matter compartments in patients following ECT. Correspondingly, ventricle size decreased in patients over the course of the ECT index series ($t_{376} = -5.09$, $p_{fdr}<0.001$, $d = -0.74$), while no significant changes emerged for the white matter compartment ($t_{376} = -0.05$, $p_{fdr}=0.96$, $d = -0.05$). The volumetric changes were broadly distributed across cortical and subcortical gray matter ROIs, with effect sizes (Cohen's d) ranging between 0.009 and 1.73 (Figure 1A-B), and the volume change was statistically significant for 79 of the 84 gray matter ROIs (Figure 1C, Supplementary Table 2). A within-group comparison of volumetric changes in patients revealed significant volumetric expansions in all ROIs except for the white matter ROI$_c$ and cerebellar grey matter (Supplementary Table 3). No changes were observed in controls (Supplementary Table 4).

We next investigated how number of ECTs may relate to the volumetric changes of the four tissue compartments while controlling for age, sex, site, the respective baseline volumes, baseline depression scores and number of ECTs squared. Volumetric increase as a function of number of ECTs was found for both subcortical (slope 0.21 ± 0.04, $t_{263} = 5.15$, $p_{fdr}<0.001$; Figure 2A) and cortical (slope 0.12 ± 0.04, $t_{267} = 3.05$, $p_{fdr}=0.006$; Figure 2B) gray
matter, while there was no association for white matter (slope 0.006 ± 0.02, t\textsubscript{267} = 0.28, p\textsubscript{fdr}=0.78; Figure 2C). Moreover, the number of ECTs square term was significant for subcortical volume changes (t\textsubscript{263} = -3.49, p\textsubscript{fdr}=0.002), suggesting significant volumetric changes also in subjects receiving shorter ECT index series. Corresponding to the increase in gray matter volume, and in accord with the Monro-Kellie doctrine (37), ventricle volume was negatively associated with number of ECT sessions (slope -0.69 ± 0.29, t\textsubscript{267} = -2.34, p\textsubscript{fdr}=0.03; Figure 2D). Moreover, there was a negative association between changes in subcortical gray matter and ventricle volumes; thus, patients experiencing the greatest subcortical volumetric increase also had the largest ventricle volume reductions (Spearman’s rank correlation rho = -0.44, p<0.001; Figure 2E). The magnitude of change for subcortical, cortical, white matter and ventricle volume across sites are shown in Supplementary Figure 2. Finally, adding psychotropic medication as an additional covariate in the models did not influence the results (Supplementary Results).

While all subjects received right hemisphere stimulation (RUL, bifrontal, bitemporal), only a subsample also received stimulation of the left hemisphere (bitemporal or bifrontal). Accordingly, the distribution of effect sizes of volume change per gray matter ROI differed for patients receiving RUL-only versus BL-only stimulation (Figure 3A-B). A comparison of electrode placement for the left subcortical ROI\textsubscript{lc} revealed greater volumetric enlargements for BL with respect to RUL stimulation (t\textsubscript{152} = 3.70, p\textsubscript{fdr}=0.002, two-sample t-test). An equivalent analysis for left cortical ROI\textsubscript{lc} was not significant (t\textsubscript{125} = 2.06, p\textsubscript{fdr}=0.12). Changes in right subcortical (t\textsubscript{152} = 0.14, p\textsubscript{fdr}=0.89) or cortical (t\textsubscript{138} = 0.15, p\textsubscript{fdr}=0.89) ROI\textsubscript{lc}s did not differ for BL vs RUL electrode placement. We also investigated if mode of electrode placement differently affected the left hemisphere’s gray matter expansion per ECT session, by constructing separate linear models for the left cortical and subcortical tissue compartments, and subsequently comparing the slopes for the number of RUL vs BL ECT.
sessions. The slopes of left cortical \(\text{ROI}_{tc} \) (0.06 ± 0.02 vs 0.06 ± 0.02) and subcortical \(\text{ROI}_{tc} \) (0.05 ± 0.02 vs 0.07 ± 0.02) volume change per ECT session did not differ for RUL vs BL electrode placements, respectively. This was further confirmed by comparisons of the slopes in a linear hypothesis test (subcortical: \(p=0.49 \), cortical \(p=0.99 \)). Also, change in MADRS score per ECT session did not differ between RUL and BL stimulation (Supplementary Results, Supplementary Figure 3).

Finally, we analyzed the relationship between the gray matter volumetric changes and treatment outcome, measured using the MADRS. We tested all anatomical gray matter ROIs in addition to the weighted means of cortical and subcortical gray matter change. There were no significant associations between changes in subcortical (slope = -1.06 ± 0.66, \(t_{262} = -1.60 \), \(p_{\text{fdr}}=0.22 \); Figure 4A) or cortical (slope = -0.56 ± 0.64, \(t_{266} = -0.88 \), \(p_{\text{fdr}}=0.38 \); Figure 4B) gray matter volumes and clinical improvement following the index series. Furthermore, although nominal significant associations emerged between the volumetric changes of right rostral middle frontal (\(t_{266} = -2.80 \), \(p=0.006 \)), right putamen (\(t_{266} = -2.00 \), \(p<0.05 \)), left accumbens (\(t_{266} = -2.33 \), \(p=0.02 \)) and clinical response (Supplementary Table 5), none of these survived correction for multiple comparisons. In addition to testing each ROI separately for an association with clinical response, we also conducted a multiple linear regression of clinical response against all anatomical ROIs simultaneously. The results of this analysis can be found in the Supplementary Results. Finally, there were no differences in gray matter changes between responders and non-responders or between remitters and non-remitters (Supplementary Results, Supplementary Figure 4).
Discussion

We here report that the structural changes following ECT in depression are broadly distributed. Using the largest sample size to date, we observed volumetric increases in widespread cortical and subcortical gray matter areas that varied based on the number of ECTs and mode of electrode placement. The subcortical gray matter changes were inversely associated with changes in ventricle volumes, while white matter volume remained unchanged. Finally, the volume enlargements of cortical and subcortical gray matter regions did not significantly relate to treatment outcome. Thus, our results indicate that gross volumetric increases of specific cortical or subcortical regions may not serve as viable biomarkers of clinical response.

As in our previous study, the gray matter volumetric effects were strongly related to number of ECTs and mode of electrode placement (5). Thus, volumetric changes of a broad set of brain regions beyond the hippocampus, scaled positively with the number of ECTs. Although the gray matter expansion was general, the effects predominated in regions closest to the temporal electrodes, which are subjected to the highest electrical stimulation. Moreover, the subcortical volumetric changes varied based on electrode placement, and thus RUL led to more right lateralized effects compared to BL electrode placement (38). This fits with computational modeling of electrical fields demonstrating more diffuse brain stimulation with BL compared to RUL (39, 40), and suggests that the neurotrophic response to ECT is not only related to its capacity to generate generalized seizure activity. Indeed, preclinical models have demonstrated a dose-dependent association between stimulus charge and dendritic arborization (41), implying that the electric field impacts ECT-related neuroplastic processes. However, although the regional distribution of the subcortical volumetric changes varied based on mode of electrode placement, it was independent of number of RUL vs BL ECT sessions. Accordingly, the relationship between ECT electric field distribution and whole-brain changes in gray and white matter warrants further investigations.
While the majority of studies investigating the neurobiological underpinnings of ECT have reported that ECT alters specific brain regions or neural networks, we found widespread volumetric increases encompassing most cortical and subcortical gray matter regions. Moreover, the subcortical volumetric enlargements were negatively associated with ventricle volumes, which accords with the Monro-Kellie doctrine stating that the sum of volumes of intracranial compartments is constant (37). A number of neuro-physiological, immunological and neurotrophic processes may contribute to the gray matter volumetric expansions, and these may not necessarily coincide with the ECT therapeutic effects. Neurotrophic factors supporting the growth and maintenance of neurons are upregulated in plasma of ECT treated patients (42, 43). In concert, preclinical studies have demonstrated increased levels of neurotrophic factors including brain-derived neurotrophic factor (BDNF) in the hippocampus and the prefrontal cortex following ECS (44), potentially resulting in an absolute increase in number of cells, dendrites or synapses, which may be detected by T1 MRI sequences (45, 46).

In addition to the neural effects, ECS also induces proliferation (21) and activation (47) of glial cells in other limbic and paralimbic brain regions, and the glial cell proliferation has been linked to hippocampal volumetric increases (20). Alternatively, volume expansion may be ascribed to changes in extracellular fluid, either in the vascular or the extravascular compartments. Neurotrophic processes are inevitably linked to vascular changes (48, 49), and thus most neurotrophic factors also possess some angiogenic properties. This finding is further substantiated by studies reporting focal and global changes in brain perfusion (50, 51) following ECT, and the regional distribution of these changes corresponds to those observed in brain volumetric studies. Finally, inflammatory mechanisms may be associated with, or be a mediator of, the various trophic and vascular effects (10, 52).

The amygdala and hippocampus showed the largest effect sizes in the present study, which accords with pathophysiological models of depression positing dysfunctional limbic
circuits as a core mechanism of these disorders (13, 53). In addition, the findings coincide with meta-analyses and mega-analyses of structural changes following ECT, reporting robust volumetric expansions of hippocampus and the amygdala (5, 6), potentially as a result of neurogenesis in the hippocampus (14, 54, 55). However, consistent with our previous results the ECT-related volumetric changes of these brain regions did not predict clinical response (5). Of note, animal models suggest specificity of the neuroplastic effects, with neurogenesis occurring in the dentate gyrus (DG) of the hippocampus (14) and attenuated dendritic arborization in the basolateral complex (BLA) of the amygdala (56). Furthermore, the expression of voltage gated calcium-channels in the BLA and the DG are selectively downregulated by ECS (57), which is likely to improve neuronal survival (58). As such, studies of global volumetric changes of these brain areas may not be sensitive to ECT outcome, which is appreciated by recent studies further dividing these brain areas into their respective subfields. The results of these preliminary studies indicate differential effects of ECT on hippocampal subfields or amygdala nuclei (59-61); and the volumetric changes of the DG may be indicative of the clinical response (61).

Our finding of large and relatively comparable, volumetric treatment-effects in numerous brain regions suggests a rather unspecific effect of ECT; thus, an association to clinical response may appear unlikely. Although associations between the volumetric changes of certain striatal and prefrontal brain regions and clinical response were found at an uncorrected significance level, none of these survived correction for multiple comparisons. Accordingly, we could speculate that measures of large-scale volumetric changes of the brain may not relate to the therapeutic effects of ECT. Alternatively, the structural changes induced by ECT may precede or lag behind clinical response, or the effects of seizure therapy on brain volumes may mask subtle effects related to treatment outcome. ECT may modulate the differentiation and function of serotonergic neurons through its effect on BDNF levels (42,
Furthermore, ECT leads to a global decrease in postsynaptic serotonin 1A receptor binding (63), similar to standard antidepressant treatment (64). Despite co-occurring neuroplastic and molecular effects, only the molecular effects may be a key mechanism underlying the therapeutic success of ECT. Thus, if successful ECT treatment depends on rearrangement of neuronal networks on a molecular level, this will most likely not be captured by investigations of whole-brain volumetric effects.

We did not observe significant whole-brain changes in white matter volume. This may at first seem contradictory, as previous studies have reported altered structural and functional brain connectivity ascribed to white matter changes (66, 67). However, the majority of studies have investigated the diffusion properties of (specific) white-matter tracts, while we report on the whole-brain white matter volume. Finally, it is possible that white matter changes lag behind gray matter increase, and thus our follow-up time may not have been sufficient to discover such changes.

One limitation of the present study rests in the heterogeneity of the patient sample. Although we explicitly modeled differences between sites and ran all raw data through the same processing pipeline, sources of heterogeneity are likely to remain. However, heterogeneity allows greater generalizability and translational value, as indeed the patients’ eligible for ECT varies across the globe. Secondly, the RUL vs BL electrode placements were not counter-balanced, and thus, any patient characteristic leading to the preference of electrode placement was also not controlled for. Thirdly, not all sites included healthy controls. To avoid potential biases introduced by the control sample, we therefore used two independent analyses when testing for volumetric changes in patients. Finally, we note that previous studies investigating cortical gray matter changes following ECT have mainly used cortical thickness and not cortical volume. However, volume change is the only parameter that can be applied to all tissue compartments (i.e. cortical gray matter, subcortical gray
matter, white matter and CSF spaces), which permits a full assessment of brain structural changes following ECT.

In conclusion, we found that ECT induces volumetric enlargements of wide-spread cortical and subcortical gray matter regions, supporting the assumption that ECT induces trophic processes in brain gray matter. The subcortical gray matter expansion scaled negatively with ventricle size, while white matter volume remained unchanged, thus the sum of volumes of intracranial compartments remained unchanged. Although measurements of gross volumetric enlargements were not related to ECT clinical response, future studies should investigate if microstructural or molecular changes related to brain gray matter, could explain clinical outcome. Delineating the macroscopic brain changes following ECT is an important step toward understanding ECT’s mechanisms of action, ultimately leading to more effective personalized treatment approaches for depressive disorders.
Acknowledgements

This work was supported by the Western Norway Regional Health Authority (#911986 to KJO and # 912238 to LO), the University of Bergen (to LO) and the Fulbright Program (to LO); the National Institute of Mental Health (#MH092301, #MH110008 to KN and RE), U01 MH11826 (to CA), the German Research Foundation (DFG, grant FOR2107 DA1151/5-1 and DA1151/5-2 to UD; SFB-TRR58, Projects C09 and Z02 to UD), the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant Dan 3/012/17 to UD), the Lundbeck Foundation (to OBP), Carlos III Health Institute (CPII16/00048 to CS-M), Innovative medical research (RE111604 to RR and RE111722 to RR), RO1 MH111359 and U24 DA041123 (to AMD).

LO wrote the first draft and coordinated the work. OTO analyzed and interpreted the data in collaboration with LO, AMD, KN and MA. Ousdal also wrote the final manuscript draft. LO, UK, HB, KJE, OBP, MBJ, CCA and AMD contributed in planning and/or design of the project. All authors contributed data, as well as critical revision of the manuscript. All authors approved the final manuscript.

GEMRIC collaborators that contributed to this work: Vera Jane Erchinger, Jan Haavik, Ole Johan Evjenth Sørhaug, Martin B. Jørgensen, Tom G. Bolwig, Peter Magnusson, Marta Cano, Jesús Pujol, José M. Menchón, Georgios Petrides and Pascal Sienaert. The full overview of the GEMRIC board members can be found here: https://helse-bergen.no/en/avdelinger/psykisk-helsevern/forskningsavdelinga-divisjon-psykishelsevern/gemric-the-global-ect-mri-research-collaboration/gemric-the-global-ectmri-research-collaboration.

Disclosures

Anders M Dale reports that he is a Founder of and holds equity in CorTechs Labs, Inc., and serves on its Scientific Advisory Board. He is a member of the Scientific Advisory Board of
Human Longevity, Inc. and receives funding through research agreements with General Electric Healthcare and Medtronic, Inc. The other authors report no biomedical financial interests or potential conflicts of interest.
References

Figure legends

Figure 1. Whole-brain volumetric changes following electroconvulsive therapy (ECT). A: Graphical illustration of volumetric changes mapped to the brain. The colors refer to Cohen's d effect sizes as coded in the bar to the right of the images. Effect sizes for white matter and ventricles are not shown. B: Cohen's d effect sizes for the volumetric changes of all cortical and subcortical grey matter regions of interest in patients (84 in total). All electrode placements were treated equal. C: Group (i.e. patients vs. controls) differences in volumetric changes of the grey matter regions of interest. The model controlled for age, sex, site and the respective baseline volumes.

Figure 2. Differential effect of electroconvulsive therapy (ECT) on four major tissue compartments. A: Scatter plot of the association between volumetric changes of subcortical gray matter and number of ECTs. Subcortical gray matter included the volumes of left and right thalamus proper, caudate, putamen, pallidum, hippocampus, nucleus accumbens and ventral diencephalon. B: Scatter plot of the association between volumetric changes of cortical gray matter and number of ECTs. Cortical gray matter consisted of left and right cortical and cerebellar gray matter. C: Scatter plot of the association between volumetric changes of total white matter and number of ECTs. Total white matter included the volumes of left and right subcortical and left and right cerebellar white matter. D: Scatter plot of the association between the changes of total ventricle volume and number of ECTs. Total ventricle volume consisted of right and left lateral, 3rd and 4th ventricles. E: Scatter plot of the association between ventricular and subcortical volumetric changes.

Figure 3. Whole-brain volumetric changes following electroconvulsive therapy (ECT) based on electrode placement. A: Cohen's d effect sizes for the volumetric changes of all cortical
and subcortical gray matter regions of interest in patients receiving right unilateral stimulation. B: Cohen's d effect sizes for the volumetric changes of all cortical and subcortical gray matter regions of interest in patients receiving bilateral stimulation. Bilateral stimulation included bifrontal and bitemporal electrode placement.

Figure 4. The association between brain volumetric effects and clinical response. A: Scatter plot of the association between subcortical gray matter volumetric changes and changes (pre-post ECT index series) in Montgomery–Åsberg Depression Rating Scale (MADRS). Subcortical gray matter included the volumes of left and right thalamus proper, caudate, putamen, pallidum, hippocampus, nucleus accumbens and ventral diencephalon. B: Scatter plot of the association between cortical gray matter volumetric changes and changes in MADRS. Cortical gray matter consisted of left and right cortical and cerebellar gray matter.
TABLE 1 Clinical and demographic characteristics of the GEMRIC sample

<table>
<thead>
<tr>
<th>Subject Characteristics</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>54.6</td>
<td>16.3</td>
<td>328</td>
</tr>
<tr>
<td>Baseline Cortical GM, cm(^3)</td>
<td>519.7</td>
<td>63.2</td>
<td>300(^b)</td>
</tr>
<tr>
<td>Changes Cortical GM, %</td>
<td>1.0</td>
<td>1.0</td>
<td>299</td>
</tr>
<tr>
<td>Baseline SubCortical GM, cm(^3)</td>
<td>52.5</td>
<td>6.0</td>
<td>300</td>
</tr>
<tr>
<td>Changes SubCortical GM, %</td>
<td>1.5</td>
<td>1.1</td>
<td>295</td>
</tr>
<tr>
<td>Baseline WM, cm(^3)</td>
<td>464.6</td>
<td>62.1</td>
<td>300</td>
</tr>
<tr>
<td>Changes WM, %</td>
<td>-0.02</td>
<td>0.5</td>
<td>299</td>
</tr>
<tr>
<td>Baseline ventricle volumes, cm(^3)</td>
<td>30.7</td>
<td>18.5</td>
<td>300</td>
</tr>
<tr>
<td>Changes ventricle volumes, %</td>
<td>-4.9</td>
<td>6.7</td>
<td>299</td>
</tr>
<tr>
<td>Baseline intracranial volume, cm(^3)</td>
<td>1489.0</td>
<td>189.0</td>
<td>300</td>
</tr>
<tr>
<td>Baseline depression score</td>
<td>34.0</td>
<td>8.3</td>
<td>324</td>
</tr>
<tr>
<td>Posttreatment depression score</td>
<td>14.4</td>
<td>10.9</td>
<td>322</td>
</tr>
<tr>
<td>Duration of episode, months</td>
<td>17.6</td>
<td>29.3</td>
<td>205</td>
</tr>
<tr>
<td>No. of ECTs, total</td>
<td>11.7</td>
<td>5.0</td>
<td>320(^c)</td>
</tr>
<tr>
<td>BL only</td>
<td>12.6</td>
<td>6.5</td>
<td>89</td>
</tr>
<tr>
<td>RUL only</td>
<td>10.6</td>
<td>3.6</td>
<td>186</td>
</tr>
<tr>
<td>No of ECTs, responders</td>
<td>11.2</td>
<td>5.0</td>
<td>199</td>
</tr>
<tr>
<td>No of ECTs, non-responders</td>
<td>12.9</td>
<td>4.7</td>
<td>113</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>46.9</td>
<td>14.6</td>
<td>95</td>
</tr>
<tr>
<td>Baseline Cortical GM, cm(^3)</td>
<td>556.4</td>
<td>56.9</td>
<td>95</td>
</tr>
<tr>
<td>Changes Cortical GM, %</td>
<td>-0.1</td>
<td>0.5</td>
<td>95</td>
</tr>
<tr>
<td>Baseline SubCortical GM, cm(^3)</td>
<td>55.2</td>
<td>5.4</td>
<td>95</td>
</tr>
<tr>
<td>Changes SubCortical GM, %</td>
<td>-0.06</td>
<td>0.4</td>
<td>95</td>
</tr>
<tr>
<td>Baseline WM, mm(^3)</td>
<td>471.5</td>
<td>56.8</td>
<td>95</td>
</tr>
<tr>
<td>Changes WM, %</td>
<td>0.01</td>
<td>0.3</td>
<td>95</td>
</tr>
<tr>
<td>Baseline ventricle volumes, cm(^3)</td>
<td>21.7</td>
<td>13.3</td>
<td>95</td>
</tr>
<tr>
<td>Changes ventricle volumes, %</td>
<td>0.05</td>
<td>3.9</td>
<td>95</td>
</tr>
<tr>
<td>Baseline intracranial volume, cm(^3)</td>
<td>1520.1</td>
<td>179.2</td>
<td>95</td>
</tr>
</tbody>
</table>

GEMRIC = Global ECT-MRI Research Collaboration; GM = gray matter; WM = white matter; ECT = electroconvulsive therapy; BL = bilateral; RUL = right unilateral

\(^a\)Due to missing data for some variables, the number of subjects varies.

\(^b\)28 subjects were missing magnetic resonance imaging before or after treatment and were therefore excluded from all analyses.

\(^c\)Information regarding number of ECTs was missing for 8 subjects. Of note, some subjects received more than one mode of electrode placement and one subject also received left anterior right temporal stimulation.
Figure 1

A

Images of brain slices showing various regions of interest.

B

Graph showing volume change across different regions for all electrode placements.

C

Graph displaying significance level differences from controls, with regions categorized as subcortical and cortical.
Figure 2

A. Treatment & volume change

Subcortical gray matter volume change (%)

B. Treatment & volume change

Cortical gray matter volume change (%)

C. Treatment & volume change

White matter volume change (%)

D. Treatment & volume change

Ventricular volume change (%)

E. Subcortical volume change & ventricle size

Ventricular volume change (%) vs. Subcortical gray matter volume change (%)
Figure 3

Volume change, right unilateral stimulation

- Left Ventral DC
- Left Accumbens area
- Left Putamen
- Left Caudate
- Left Pallidum
- Left Thalamus Proper
- Left Hippocampus
- Left Amygdala
- Right Ventral DC
- Right Caudate
- Right Accumbens area
- Right Putamen
- Right Pallidum
- Right Thalamus Proper
- Right Hippocampus
- Right Amygdala

Volume change, bilateral stimulation

- Left Cerebellum Cortex
- Left Isthmus Cingulate
- Left Frontal Pole
- Left Pars Orbitalis
- Left Pericalcarine
- Left Lateral Orbitofrontal
- Left Medial Orbitofrontal
- Left Cuneus
- Left Posterior Cingulate
- Left Precuneus
- Left Rostral Middle Frontal
- Left Transverse Temporal
- Left Postcentral
- Left Lingual
- Left Lateral Occipital
- Left Superior Parietal
- Left Middle Temporal
- Left Rostral Anterior Cingulate
- Left Paratriangularis
- Left Banks STS
- Left Inferior Parietal
- Left Superior Temporal
- Left Caudal Middle Frontal
- Left Inferior Temporal
- Left Supramarginal
- Left Parahippocampal
- Left Superior Frontal
- Left Paracentral
- Left Precentral
- Left Entorhinal
- Left Pars Opercularis
- Left Temporal Pole

- Right Cerebellum Cortex
- Right Isthmus Cingulate
- Right Frontal Pole
- Right Pars Orbitalis
- Right Superior Parietal
- Right Cuneus
- Right Pericalcarine
- Right Lateral Orbitofrontal
- Right Rostral Middle Frontal
- Right Postcentral
- Right Precuneus
- Right Posterior Cingulate
- Right Lateral Occipital
- Right Caudal Middle Frontal
- Right Lingual
- Right Medial Orbitofrontal
- Right Inferior Parietal
- Right Paratriangularis
- Right Precentral
- Right Superior Frontal
- Right Transverse Temporal
- Right Pars Opercularis
- Right Supramarginal
- Right Middle Temporal
- Right Rostral Anterior Cingulate
- Right Parahippocampal
- Right Caudal Anterior Cingulate
- Right Inferior Temporal
- Right Superior Temporal
- Right Fusiform
- Right Temporal Pole

Cohen's d

Hemisphere:
- Left
- Right

Region of interest:
- Subcortical
- Cortical
A

Outcome & volume change

Subcortical gray matter volume change (%)

B

Outcome & volume change

Cortical gray matter volume change (%)

Figure 4