Silicone elastomers with high-permittivity ionic liquids loading

Liu, Xue; Nie, Yi; Yu, Liyun; Zhang, Suojiang; Skov, Anne Ladegaard

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Silicone elastomers with high-permittivity ionic liquids loading

Xue Liu (1)(2), Yi Nie (2), Liyun Yu (1), Suojiang Zhang (2), Anne Ladegaard Skov(1)*

(1) Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark;
(2) CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China;

Abstract
Dielectric elastomers transducers (DETs) represent a promising transducer technology, due to their excellent ability to undergo large and reversible deformations under an applied electric field. The most obvious challenge facing current DETs is the high driving voltages necessary to drive them, and so an effective way to overcome this shortcoming is to increase the dielectric permittivity of the applied elastomers. Ionic liquids (ILs), which have gained significant attention in recent years, have high permittivity but also high conductivity. It is therefore interesting to blend ILs into elastomers to increase their dielectric permittivity while focusing on maintaining the non-conductive nature of the elastomers. Herein, high-permittivity silicone elastomers were prepared from blending in ILs. The influence of the structure and the content of ILs on the material properties was discussed, and important properties for material applications as DETs, such as dielectric permittivity, gel fraction and mechanical properties, were also investigated. It was found that 1-butyl-3-methylimidazolium hexafluorophosphate (BmimSbF6) is the most suitable IL for the given elastomer system. The dielectric permittivity of the elastomers increased with the increasing content of BmimSbF6. The Young’s modulus decreased in line with the increasing content of BmimSbF6, as expected. A simple figure of merit (Fuencia) for actuators was used and the resulting Fuencia of elastomer with 90 phr IL loading is 10.40 thereby indicating that the material has a great advantage when used in actuators.

Background

Properties of PDMS

- Transparent
- Bendable
- Insoluble
- Reversibility

Introduction of ionic liquids (ILs)

- High chemical stability and thermal stability
- Liquid at room temperature
- Low vapor pressure
- High dielectric permittivity
- Tunable structure and properties
- Wide electrochemical window
- High electrical conductivity

Effect of BmimSbF6 content on dielectric properties

Fig. 1 Storage permittivity (left) and tan(δ) (right) of films with different content of BmimSbF6 at room temperature.

Effect of BmimSbF6 content on mechanical properties

Fig. 2 Young’s modulus (left) and tensile strains (right) of films with different content of BmimSbF6 at room temperature.

Effect of BmimSbF6 content on Fuencia

Fig. 3 Gel fractions of films with different content of BmimSbF6.

Fig. 4 Fuencia of films with different content of BmimSbF6.

Conclusion

- Very few ILs are compatible with Pt curing chemistries; BmimSbF6 is one of those.
- The storage permittivity of film increased in line with increasing BmimSbF6 content.
- The elastomers with IL loaded became increasingly softer in line with an increasing content of BmimSbF6.
- The figure of merit (Fuencia) increased with increasing BmimSbF6 content.

Acknowledgments
This work was supported by the Department of Chemical and Biochemical Engineering, DTU, Institute of Process Engineering, Chinese Academy of Sciences and the National Natural Science Foundation of China.

References