Minute-Scale Wind Forecasting Using Lidar Inow Measurements

Simon, Elliot

Link to article, DOI:
10.11581/dtu:00000054

Publication date:
2019

Document Version
Other version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Minute-Scale Wind Forecasting Using Lidar Inflow Measurements

Elliot Simon
PhD Defence
24 June, 2019
Outline

- Background and motivation
- Project objectives
- Experimental results
 1. WAFFLE
 2. Østerild Balconies
 3. LASCAR
- Outlook and conclusions
Our reality

- Energy is a critical resource
- Global transition towards clean and affordable energy systems
- Money to be made!
Wind power

- Industry is rapidly maturing to become competitive and efficient
- Wind supplies 4% (global) 14% (EU) and 44% (Denmark) of electricity demand
- Wind is leading renewable in new installed capacity
Important considerations (1)

- Atmospheric conditions dictate production (Production)
- Winds are highly variable (seasonal patterns, weather, turbulence, land effects)
- Variability of wind \rightarrow variability in energy production
- Power grid requires constant balance (production = consumption)
- System level storage not feasible (at the moment)
Important considerations (2)

- Grid and markets not devised for high variability and uncertainty
- Grid failures are catastrophic
- Real-time power balancing is expensive! (Reserve capacity, ancillary services, demand response)
- Market designs are changing to accommodate renewables (e.g. 5/15/30-minute contracts in EPEX & AEMC)

2003 blackout: 55 million without power
Why do we need minute-scale wind forecasts?

- Predicting energy production
 - Support schemes being phased out
 - Financial risk from forecast errors
 - Grid planning and operation

- Large-scale and extreme event detection/response

- Collective wind farm control
Wind farm control

- Production gains and fatigue load reductions
 - Wake steering
 ~5% AEP increase \cite{fleming2017}
 - Dynamic induction control
 ~1.5% AEP increase \cite{gebraad2015}

- Flow models and controllers require knowledge of conditions
 - Sensitive to wind direction input!

Wake steering

![Wake steering diagram](image-url)
Wind variability on very-short timescales

- 35 days of 1 Hz active power measurements from 850 kW V52 wind turbine
- Change in active power (% capacity) over selected time frames
Forecasting approaches on minute-scale

- Numerical weather prediction (physical modelling e.g. WRF) not applicable
 - Lack knowledge of boundary conditions
 - Computationally not feasible

 → Persistence – everything stays the same, next value = previous value
 → Statistical time series modelling – inferring patterns from past observations

- Maybe we can do better?
- Use remote sensing to look ahead and anticipate what’s coming
Remote sensing

- Measurement technique using radio/light/sound waves to observe phenomena at a distance
- Common examples: ranging radar, mapping lidar

- Doppler remote sensing adds velocity information
- Doppler wind lidars are compact, commercially available, well established, and scatter off atmospheric aerosols
- Scan head allows great flexibility in measurement setup
- Measurements are radial! (velocity component along line-of-sight)

Source: Vasiljevic (2014)
Scanning lidar measurement techniques

- Takes time to scan. Everything is a tradeoff!
- Plan position indicator (PPI)
 - Fixed elevation angle, azimuth sweep (full/partial)
- Doppler beam swing (DBS)
 - Fixed points (4 orthogonal and optional vertical beam)
 - Opposing pairs used to reconstruct horizontal winds
PhD project objectives

- Explore and document potential applications of minute-scale forecasts for wind energy
- Interface with forecast users and providers to survey existing practices and encourage community dialogue
- Perform field experiments to obtain observational data needed to build and evaluate remote sensing based forecast models
- Implement and test novel forecast methods using lidar observations which adhere to the constraints of real-time usage
- Benchmark the lidar forecast method’s skill to other commonly used methods
- Reflect on the potential benefits and drawbacks of a real-world fulfillment of such a system
Experiments introduction

- Three field experiments performed using pulsed scanning lidars (DTU Long-Range WindScanners)
- All campaign data is released for public access (CC BY 4.0)
- Not a solo effort! Big thank you to everyone who contributed 😊
Experiment 1: WAFFLE

(Wind Analysis of Fronts and Large Events)
WAFFLE experiment (Risø)

- Short feasibility study (3 weeks) for exploratory analysis and investigating advection-based flow transport
- Single ground-based scanning lidar deployed, scanning upwind (west)
- Beam elevated at 3° to clear vegetation and intersect met-mast sensors

Data access: Simon and Lea, 2019a
WAFFLE methodology (1)

- Far point used to forecast wind speed at close point

- Forecast horizon of 70 s derived from mean advection time between positions
WAFFLE methodology (2)

- Wind reconstruction performed using IVAP cosine fitting method (Liang, 2007)
- Measurements height-normalized using empirical wind profile power law ($\alpha=0.14$)
 - (No inputs required beyond wind speed and height)
- 2-day period with neutral/near-neutral stability and westerly winds chosen
- Wind power transformation using generic power curve model
WAFFLE scan-shift method

- Upwind position at present time used to predict delayed downwind signal using time-of-flight
- Phase error apparent in time series and lagged cross-correlation

![Graph showing Advection delay](image)
Performance evaluation metrics

- MAE (mean absolute error)
 \[MAE(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n-1} |y_i - \hat{y}_i| \]

- RMSE (root mean squared error)
 (larger errors are penalized disproportionately to smaller ones)
 \[RMSE(y, \hat{y}) = \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} (y_i - \hat{y}_i)^2} \]

- General linear model fit
 - Slope
 - Intercept
 - \(R^2 \) coefficient of determination
WAFFLE forecast evaluation (wind speed)

Persistence forecast (m/s)

Lidar scan-shift forecast (m/s)

$y = 0.939x + 0.514$
$R^2 = 0.932$
$n = 2770$ mins
$MAE = 0.401$ m/s
$RMSE = 0.527$ m/s

$y = 0.95x + 0.429$
$R^2 = 0.957$
$n = 2770$ mins
$MAE = 0.327$ m/s
$RMSE = 0.427$ m/s
WAFFLE forecast evaluation (wind power)
WAFFLE key results

- Scan-shift significantly outperforms persistence benchmark
- 20% (30%) improvement in RMSE for wind speed (power) forecast
- Persistence skill decreases as wind speed increases
- Inclined measurement plane is not ideal for correlating far distances and height normalization has limitations
 - Valdecabres (2018) would sympathize
Experiment 2: Østerild Balconies
Balconies experiment (Østerild)

- Full scale (4 month) measurement campaign in coastal western Denmark
- Scanning lidars mounted at height to met-towers (50 m and 200 m AGL)
- PPI scans provide 2D cross-sections of the horizontal wind field with no height change over distance

Data access: Simon and Vasiljevic, 2018
Balconies methodology

Forecast position

Upwind measurements
(100 m – 7 km)
Balconies data processing

- Simple and quick wind retrieval method introduced

- Cup anemometer measurements from same height used as reference signal
- Sampling rate of both instruments matched using moving average
- Data sources synchronized to align timestamps
Balconies upwind space-time correlations (1)

Upwind lidar measurements shifted and cross-correlated to reference signal.
Balconies upwind space-time correlations (2)
Balconies forecasting model

- Available lidar measurements (100 m - 7 km upwind scalar wind speeds) used to predict 1-60 min ahead wind speeds at met-mast
- Direct multi-step forecast model (separate models for each time step)
- Rolling walk-forward training and prediction architecture (assimilates latest observations to update model weights at each step)
- Optimization using Stochastic Gradient Descent Regression (SGDR)
 - Includes regularization penalty to perform feature selection and counter overfitting
 - Allows online learning (partial fitting to previously trained model)
 - Quick and suitable for very large datasets

- All details and flowcharts in the thesis!
Balconies forecast evaluation
Balconies weather front event
Balconies key results

- Horizontal scan configuration corrects prior measurement concerns
- Space-time correlations demonstrate sharp discernable peak up to 2-3 km upstream
- Theoretical and empirical wind field advection shows good agreement within this range
- RMSE reduction of 21% (1-min ahead), 11% (5-min), 9% (10-min), 7% (30-min), 6% (60-min) over (10-min average) persistence
- At least some coherent structures able to be seen and their propagation tracked

- But the atmosphere isn’t a 1-Dimensional conveyor belt!
Experiment 3: LASCAR

(LAS Campaign At Risø)
LASCAR experiment (Risø)

- Full scale (4 month) measurement campaign along inland fjord
- Rooftop lidar performed rapid PPI scans up to 4 km
- Ground based lidar performed DBS profiling

Data access: Simon and Lea, 2019b
LASCAR forecast approach

- Most spatial information is lost through wind reconstruction/retrieval
 - Can we preserve this?
- Investigate 2D space-time forecasting methods from computer vision
How can we apply this?

- Convolutional recurrent neural networks used for image sequence prediction (spatial features and time are key attributes)

- What does this look like in a real product?
Inspiration from computer vision
LASCAR forecast model (1)

• 2-D convolutional LSTM neural network
• Same online learning approach as before
• Trained on Google Cloud Compute instance (1x Tesla P100 GPU) using tensorflow

• Sequence of last 5-mins of upwind PPI scans used to forecast following 5-mins conditions at downstream position (DBS lidar profiles)
• Multiple output strategy (one model for all time steps)
• Wind vectors (u and v) are output to give both speed and direction predictions
• Benchmarked against persistence, ARI(5,1) and ARIMA(5,1,1) models
LASCAR forecast model (2)

- 12 hour continuous period with inflow direction
- Re-projected polar to Cartesian coordinates
- Scaled values (0-1) according to:

\[X_{\text{max}} = \bar{X} + 4\sigma^2 \]
\[X_{\text{scaled}} = \frac{X - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}} \]
LASCAR forecast evaluation

Wind speed forecast

Wind direction forecast

Relative improvement of Lidar-ANN model compared with:

<table>
<thead>
<tr>
<th>Wind speed</th>
<th>Wind direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistence (%)</td>
<td>ARIMA (5,1,0) (%)</td>
</tr>
<tr>
<td>0.22</td>
<td>3.30</td>
</tr>
<tr>
<td>0.43</td>
<td>19.68</td>
</tr>
<tr>
<td>0.65</td>
<td>18.71</td>
</tr>
<tr>
<td>0.87</td>
<td>18.77</td>
</tr>
<tr>
<td>1.08</td>
<td>18.35</td>
</tr>
<tr>
<td>1.30</td>
<td>17.17</td>
</tr>
<tr>
<td>1.52</td>
<td>16.62</td>
</tr>
<tr>
<td>1.73</td>
<td>16.50</td>
</tr>
<tr>
<td>1.95</td>
<td>16.96</td>
</tr>
<tr>
<td>2.17</td>
<td>18.37</td>
</tr>
<tr>
<td>2.38</td>
<td>18.55</td>
</tr>
<tr>
<td>2.60</td>
<td>18.86</td>
</tr>
<tr>
<td>2.82</td>
<td>18.09</td>
</tr>
<tr>
<td>3.03</td>
<td>17.04</td>
</tr>
<tr>
<td>3.25</td>
<td>16.26</td>
</tr>
<tr>
<td>3.47</td>
<td>15.91</td>
</tr>
<tr>
<td>3.68</td>
<td>13.21</td>
</tr>
<tr>
<td>3.90</td>
<td>7.00</td>
</tr>
<tr>
<td>4.12</td>
<td>1.30</td>
</tr>
<tr>
<td>4.77</td>
<td>-57.58</td>
</tr>
<tr>
<td>4.98</td>
<td>-98.38</td>
</tr>
</tbody>
</table>
LASCAR key results

- Space-time features from sequences of PPI scans applied in forecasting model
- Coherent patterns retain discernable features up to 3 km and up to 5-minutes ahead
- ANN-lidar method outperformed 2/3 benchmarks (persistence & ARI(5,1))
- ANN-lidar method performed best up to 30s ahead
- Similar performance gains over persistence to previous study (18% lower RMSE)
- ARIMA(5,1,1) model performs remarkably well!
Outlook and broad conclusions

• We can do better than persistence (at least in simple terrain)
 – Order of 20% to 5% RMSE improvement, depending on lead time
• Lidar regression models may not deliver broad overall value compared with time series models using ‘free’ existing data
 – Measure and save high-frequency data!
• Real value of lidar forecasting system lies in detecting large scale events where NWP misses entirely, or gets the scale and timing wrong
• Advection assumption likely only holds in simple terrain / offshore
 – WESC 2019: Ines Würth
 Experiences, Challenges and Opportunities of Lidar-Based Minute-Scale Forecasting in Complex Terrain
Thank you for joining!

Please get in touch if you have anything to discuss:
Elliot Simon <ellsim@dtu.dk>
Balconies

Data flowchart

Forecast model (partial fit)

Forecast model (rolling re-training)
LASCAR

Data filtering

- Input lidar measurements
 - Parse timestamps and convert to local time
- Filtering
 - Drop partial scans
 - CNR filter
 - Radial speed filter
 - Line-of-sight filter
 - Range gate filter
- Reproject Polar to Cartesian
- Scale 2-D scan image
- Copy lags to new axis
- Reduce sample size by lags and leads
- Processed dataset
 - Shape = (time, lags, x_dim, y_dim, channels)

Model implementation

- In-sample PPI scans
 - T + 5 mins to T PPI scans
- In-sample DBS measurements
 - T to T + 5 mins DBS measurements
- Feature scaling
 - T to T + 5 mins DBS measurements
- Train model
 - Model prediction
 - Real time prediction
 - Inverse scaling
 - Calculate wind speed and direction
 - Forecast output
 - u-component
 - v-component
 - wind speed
 - wind direction

Neural network architecture

- Input layer
 - Shape = (1, 23, 106, 294, 1)
- ConvLSTM2D
 - 16 5x5 filters
 - (1, 23, 106, 294, 16)
- TimeDistributed MaxPooling2D
 - (2x2)
 - (1, 23, 53, 147, 16)
- ConvLSTM2D
 - 32 5x5 filters
 - (1, 23, 53, 147, 32)
- TimeDistributed MaxPooling2D
 - (2x2)
 - (1, 23, 26, 73, 32)
- TimeDistributed Flatten
 - (1, 23, 60736)
- Two channel Multi-step output
 - (1, 23, 2)
Practical recommendations

• Measure inflow with lowest elevation angle possible
• Simplified application specific instrument (e.g. long-range fixed beam adaptation)
• Use only 1 system (no dual/triple Doppler)
• Use radial speeds directly, or simple wind retrieval methods
• Faster sampling rate is more important than spatial resolution
• Use dynamic filtering to increase data availability
Extensions of this work

• Use real-time inflow measurements to correct pre-run NWP forecasts
• Develop classification system for identifying and tracking large-scale events
• Integrate upstream measurements into wind farm flow models
• Dynamically adapt scan pattern depending on conditions
• Include uncertainty estimates for probabilistic output
• Extend measurement range (e.g. up to 30 km with LMWT or SmartWind radar)