Foam based on fish skin collagen by-product: a colloidal approach

Casanova, Federico; Mohammadifar, Mohammad Amin; Kobbegaard, Sara; Jakobsen, Greta; Jessen, Flemming

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Foam based on fish skin collagen by-product: a colloidal approach

Federico Casanova a*, Mohammad Amin Mohammadifar a, Sara Kobbelgaard b, Greta Jakobsen c and Flemming Jessen a*

a Food Production Engineering, DTU Food, Technical University of Denmark, Søltofts Plads227, Dk-2800 Lyngby, Denmark.
b Technological Institute, Kongsvang Alle 29, DK-8000 Aarhus C.
c Danish Fish Protein, Adelvej 11, Hoejmark, DK-6940 Lem St.

Foams are the essential building component of many aerated food structures: breads, cakes, extruded and expanded cereal, whipped creams, ice creams. A foam’s set state is directly related to its structural stability. Proteins are commonly used to produce food foams with long-term stability.

Recent changing in consumption trends, due to ecological problems, animal welfare, allergies, sanitary and religious restrictions, have led to making a concerted effort to find alternative protein sources that can provide similar functionalities in food systems. The large quantities of by-products generated by the fish-processing industry are a potential source for the production of gelatin.

Research question: Can gelatin by-products be employed as alternative sources of protein?

We compared the Foamability (F), the Foam capacity (Fc) and the Foam stability (Fs) of 2 commercial fish collagen samples (A and B) and 3 fish skin by-products collagen (C, D and E).

Partial conclusions: No significant difference was observed in terms of F between the samples. Better Fc (+ 25 %) was observed for the sample E. Fish skin by-products collagen present greater Fs compared to commercial sample: sample C, D and E present 48 ± 2 % of Fs after 30 min whereas A and B present only 4.4 % and 0 %.

Future directions: In order to deeper investigate and better understand these differences, other analytical approaches are planned: dynamic interfacial tension, ellipsometry, film pressure balance as well as small angle X-ray scattering (SAXS).

Project is funded by Green Development and Demonstration Program (GUDP), Ministry of Environment and Food of Denmark (J.Nr. 3405-17-1295)

* Contact:
Dr. Federico Casanova, Postdoctoral Researcher, feca@food.dtu.dk, Building 227, room 162
Dr. Flemming Jessen, Senior Researcher, fjes@food.dtu.dk, Building 221, room 050