Danish in-kind simulation efforts to the ESS - an overview

Klinkby, Esben Bryndt; Willendrup, Peter Kjær; Lefmann, Kim

Publication date: 2012

Danish in-kind simulation efforts to the ESS - an overview

Esben Klinkby, DTU Nutech

contributions from:
Peter Willendrup (DTU)
Kim Lefmann (Uni Copenhagen)
Outline

- From hard protons to cold neutrons
 - Experimental overview
 - Simulation tools
 - “In house” simulation efforts
 - “In country” instrument design
Target station design

- Target station modeled with MCNPX
- Spallation takes place in rotating tungsten target
- The scale of the objects under study dictates the use of cold neutrons (~1-10 meV)
- Neutrons are moderated in H₂ and H₂O for cold and thermal neutrons
Flip-view
Neutron guides

- Ni and Ti are chemically similar, but have very different refraction indices
- Coating with alternating layers: “Supermirrors” of which guides can be built which ~without loss, transport cold neutrons to radiation safe distances allowing ToF to be measured
Collimators & slits

- Works from the principle: Absorb anything which don't have the desired direction (gadolinium)
- Discriminate beam in *space* and *divergence*
Disk Choppers

- Introduce pulses
- Discriminate beam in *time*
- Combining two choppers ~ Fermi chopper / velocity selector
Velocity selector

- Discriminate beam in *velocity / wavelength*
- $\Delta \lambda / \lambda \sim 10\%$
Fermi Choppers

- Discriminates beam in *time* and *wavelength* simultaneously
Crystal monochromators (and analyzers)

- Discriminate beam in *wavelength* by Bragg's law
- $\Delta \lambda / \lambda \sim 1\%$ (plus multiples $\lambda/2$, $\lambda/3$, ...)
Beamline design

• By a suitable selection of: choppers, velocity selectors etc etc the neutron scatterer is able to 'design' the beam optimal for his/her sample.
Some samples studied

• Numerous, cross-disciplinary

• Materials in different states, eg.
 • Crystals
 • Powders
 • Molecules in solution

• Material behaviour/function
 • Materials for
 fuel cells, batteries...
 • Magnets
 • Superconductors
 • Chemical reactions
 • Protein folding
 • Polymers
 • Metallurgy
 • ...

• Å to m distances
• Fourier (reciprocal space) methods
• Direct space methods
Detectors

- Since neutrons are electrically neutral, they are difficult to detect.
- The preferred reaction is:

 \[n + ^3\text{He} \rightarrow ^3\text{H} + p \]

due to the high cross-section
E field → protons collected → signal

- Recent years lack of ^3He has forced the community to look for alternatives:

 \[n + ^{10}\text{B} \rightarrow ^7\text{Li} + ^4\text{He}. \]

due to the high neutron capture cross-section of ^{10}B

 The energetic nuclei ionize gas molecules which can be collected as signals
Monte Carlo techniques

• Los Alamos has since then developed and perfected many different monte carlo codes leading to what is today known as the codes MCNP5 and MCNPX
• State of the art is MCNPX (or soon the merged MCNP6 code) that features numerous (even exotic) particles
• MCNP was originally Monte Carlo Neutron Photon, later N-Particle
• Mainly used for high-energy particle descriptions in weapons, power reactors and routinely used for estimating dose rates and needed shielding
• Does not to date handle coherent scattering of neutrons due to the focus on high energies
Ray-tracing methods

• When neutrons move in “free space”, we use ray-tracing - but in most cases in direction source → detector
• Of course parabolas rather than straight lines are used to implement gravity
Elements of Monte-Carlo raytracing

- Instrument Monte Carlo methods implement coherent scattering effects
- Uses deterministic propagation where this can be done
- Uses Monte Carlo sampling of “complicated” distributions and stochastic processes and multiple outcomes with known probabilities are involved - i.e. inside scattering matter
- Uses the particle-wave duality of the neutron to switch back and forward between deterministic ray tracing and Monte Carlo approach

- Result: A realistic and efficient transport of neutrons in the thermal and cold range
- McStas: the code (of Risø origin) that encompass transport, beam-line and detector simulation, analysis framework
Neutron ray/package:
Weight (p): # neutrons (left) in the package
Coordinates (x, y, z)
Velocity (v_x, v_y, v_z)
Spin (s_x, s_y, s_z)

Time (t)

Instrument: positioning + transformation between sequential component coordinate systems, e.g. neutron source, crystal, detector.

Components: Here the neutron physics happen, neutron weight adjusted according to scattering probabilities etc.

Local, internal coordinate system!
What is McStas used for?

- Instrumentation
- Virtual experiments
- Data analysis
- Teaching

KU, DTU 2005-2012
INSIS, NIDS, ESS workshops
Example from ILL

• Sources
• Optics
• Samples
• Monitors
• If needed, write your own comps
How to get from MCNPX to McStas

• Based on the latest MCNPX ESS target station (bi-spectral) geometry from ESS-Bilbao we have developed a McStas component mimicking both geometry and spectra.

• We are also working on alternatives which transport the neutron state directly, thus avoiding loss of phase-space / making assumptions.
Danish in-kind contributions

- 1.0 M€. Proton beam control (Søren Pape Møller, AU)
- 1.5 M€. Data Management and Software Center (Stig Skelboe, KU)
- 1.0 M€. Instrument simulation central office (Kim Lefmann KU, P.Willendrup DTU)
- 0.1 M€. Integrating moderator- and instrument simulations
 (B.Lauritzen, P.Willendrup, E.Nonbøl, E.Klinkby DTU)
- 0.2 M€. Radio-ecology baseline (Mikael Jensen, Sven Nielsen DTU)
- 0.1 M€. MANTID – DMSC (Stig Skelboe, KU)
- 0.8 M€. 5 DK-CH instrument packages
 (Niels Bech Christensen, DTU; Christian Rüegg, PSI)
Data Management and Software

• Staff: Stig Skelboe, Thomas Rod, Lars Melvyn, (secretary) (3 FTE)
• Supporters: scientists from KU, DTU-Risø, AU

• DMSC scope (under planning)
 – User service
 – Instrument control
 – Data acquisition
 – Data archiving
 – Data visualization and analysis
 – (science modeling)
 – Instrument simulation
Instrument simulations

- Simulate a suite of simple instruments to investigate time structure
 - Later: move towards detailed instrument descriptions
- Answer questions from ESS instrument responsibles
 - Compare thermal powder diffraction designs
 - Compare thermal spectrometer designs
 - Analyze effect of off-specular scattering
- Prepare for virtual experiments for data analysis
 - Event mode data; bootstrap
 - Effect of the pulse tail
 - Effect of multiple scattering; sample environment
- Maintain and develop McStas
- Study guide systems
 - Long thermal guides
 - Guide bundles
 - Bi-spectral extraction
- Support function for simulators
Example: Cold chopper spectrometer

- 100 m elliptical guide
- Wavelength multiplication at sample
- 30 (300) times IN5 flux
- Count rates of the order 10^8 / sec.
- VE shows expected resolution
- Moderator “Hot spot” is highly beneficial
Conclusions

- Danish universities are/will be heavy involved in many aspects of the design, construction and usage of the ESS and its instruments, including:

 → Data management
 → Radioecology
 → Instrument simulation
 → Instrument design
 → Neutron scattering experiments
 → Neutronics
 → Develop/maintain McStas
Backup slides...
Overview
Moderators... (Where McStas starts)

$I(x, y, E, t)$ from neutronics

\[I_{BL}(x, y, E, t) = \frac{\Omega_{BL}(x, y)}{4\pi} \cdot I(x, y, E, t) \]
Example suite: 7 TOF spectrometers:

- ESS_IN5_reprise.instr
- ILL_BRISP.instr (Small-angle)
- ILL_H15_IN6.instr
- ILL_H16_IN5.instr
- ISIS_Hetfull.instr
- PSI_Focus.instr
- templateTOF.instr
Example suite: 5 TAS

- ILL_H142_IN12.instr
- ILL_H25_IN22.instr
- h8_test.instr
- templateTAS.instr
- linup-1.instr (Risø TAS 1)
- linup-2.instr
- linup-3.instr
- linup-4.instr
- linup-5.instr
- linup-6.instr
- linup-7.instr
Example suite: 1 Hybrid spectrometer + 1 Spin-echo
Example suite:
Large scale structures
Example suite: Diffractomters

- ILL_D1A.instr
- PSI_DMC.instr
- templateDIFF.instr
- templateLaue.instr
Example suite: Imaging