Challenges in bimetallic multilayer structure formation: Pt growth on Cu monolayers on Ru(0001)

Mancera, Luis A.; Engstfeld, Albert Kilian; Bensch, Andreas; Behm, R. Juergen; Gross, Axel

Published in:
Physical Chemistry Chemical Physics

Link to article, DOI:
10.1039/c7cp03320f

Publication date:
2017

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Challenges in bimetallic multilayer structure formation:

Pt growth on Cu monolayers on Ru(0001)

Luis A. Mancera,1,* Andreas Bensch,2 Albert K. Engstfeld,2*a R. Jürgen Behm,2 and Axel Groß1,*

1Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
2Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany

In a joint experimental and theoretical study, we investigated the formation and morphology of PtCu/Ru(0001) bimetallic surfaces grown at room and higher temperatures under UHV conditions. We obtained the PtCu/Ru(0001) surfaces by deposition of Pt atoms on a previously created Cu/Ru(0001) structure which includes only one Cu monolayer. Bimetallic surfaces obtained at different Pt coverages are investigated using STM imaging, revealing the existence of reconstruction lines and Cu islands. Although primary created Cu islands continue growing in size by increasing Pt coverage, a continuous formation of new Cu islands is observed. This leads to an atypical exponential increase of the island density as well as to an atypical behavior of the average number of atoms per island for low Pt coverages. Although coalescence of the islands is observed for high Pt coverages, the island density remains almost constant at that regime. In order to understand the trends observed in the experiments, we study the stability of these surfaces, atom adsorption, and adatom diffusion using periodic density functional theory calculations. On the basis of the experimental observations and the first-principles calculations, we suggest a model that includes exchange of Pt adatoms with Cu surface atoms, Pt and Cu adatom diffusion, and attractive (repulsive) interactions between Cu (Pt) adatoms with substitutional Pt surface atoms, which explains the main trends in island formation and growth observed in the experiment.

Keywords: Bimetallic surfaces, exchange, nucleation and growth, Pt, Cu/Ru(0001), STM, DFT
Submitted: 18.05.2017

*a Present address: Department of Physics, Danish Technical University, Kgs. Lyngby, DK-2800, Denmark
* Authors to whom correspondence should be addressed: luis.mancera@alumni.uni-ulm.de, axel.gross@uni-ulm.de