A proper size measure for quorum sensing ignition

Sams, Thomas; Ferkinghoff-Borg, Jesper

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
A Proper Size Measure for Quorum Sensing Ignition

Biofilm aggregates of bacteria are thought to be able to align their phenotypic behavior with size, density, and growth state of the ensemble. This is achieved by a cell-cell regulatory system termed quorum sensing. In the generic quorum sensor a positive feedback in the production of signal molecules defines the conditions at which the collective behavior switches on. In spite of its conceptual simplicity, a proper measure of biofilm colony “size” has been lacking. We establish that the cell density multiplied by a geometric factor constitutes an appropriate size measure. The geometric factor is the square of the radius for a spherical colony. For a disk-shaped biofilm the geometric factor is the horizontal dimension multiplied by the height, and the square of the height of the biofilm if there is significant flow above the biofilm. Remarkably simple factorized expressions for the size are presented. Mol. BioSyst., 2014, 10, 103-9

Biomedical Engineering, Technical University of Denmark, Lyngby, DENMARK.

Abstract:

Biofilm: From Nature to Models
Presentation Preference (Complete): Poster or Oral presentation
Additional Info (Complete):
Level of education: Ph.D.
Travel Grants: No
Gender: Male
Minority: No

Status: Complete
American Society for Microbiology
1752 N Street N.W.
Washington, D.C. 20036
Phone: (202) 777-3600

Leaves cOASIS Feedback

Powered by cOASIS, The Online Abstract Submission and Invitation System © 1996 - 2018 ETI Meeting Technology. All rights reserved. Privacy Policy
A proper size measure for Quorum Sensing Ignition

Thomas Sams and Jesper Ferkinghoff-Borg
Technical University of Denmark

Poster #049
ASM Conference on Biofilms
Washington DC, USA, October 6-11, 2018

QS reaction-diffusion model

1. Cells produce signal molecules, S, at rate $[b_s; k_s]$.
2. Signal molecules diffuse between cells.
3. Cells produce regulator protein, R.
4. Regulators bind signal molecules (K).
5. SR complex promotes S production (K_s).

Take home

Size Measure:

$$\Sigma = \rho v R^2$$

Ignition point:

$$r_a = [R_2S_2] \sim \frac{b_s}{k_s} K_s$$