A proper size measure for quorum sensing ignition

Sams, Thomas; Ferkinghoff-Borg, Jesper

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A Proper Size Measure for Quorum Sensing Ignition

Biofilm aggregates of bacteria are thought to be able to align their phenotypic behavior with size, density, and growth state of the ensemble. This is achieved by a cell-cell regulatory system termed quorum sensing. In the generic quorum sensor a positive feedback in the production of signal molecules defines the conditions at which the collective behavior switches on. In spite of its conceptual simplicity, a proper measure of biofilm colony “size” has been lacking. We establish that the cell density multiplied by a geometric factor constitutes an appropriate size measure. The geometric factor is the square of the radius for a spherical colony. For a disk-shaped biofilm the geometric factor is the horizontal dimension multiplied by the height, and the square of the height of the biofilm if there is significant flow above the biofilm. Remarkably simple factorized expressions for the size are presented. Mol. BioSyst., 2014, 10, 103-9
A proper size measure for Quorum Sensing Ignition

Thomas Sams and Jesper Ferkinghoff-Borg
Technical University of Denmark

Poster #049
ASM Conference on Biofilms
Washington DC, USA, October 6-11, 2018

How big is our colony?
Cell density
x
(Radius)²

QS reaction-diffusion model
1. Cells produce signal molecules, S, at rate \([b_s; k_s]\).
2. Signal molecules diffuse between cells.
3. Cells produce regulator protein, R.
4. Regulators bind signal molecules \((K)\).
5. SR complex promotes S production \((K_s)\).

Take home

Size Measure:
\[
Σ = ρ_v R^2
\]

Ignition point:
\[
a = [R_2S_2] \sim \frac{b_s}{k_s} K_s
\]

\[
\begin{align*}
[r_a] &= \frac{s^2}{K^2 + s^2 r_m} \\
K_s \rightarrow 10^0 \\
[b_s / k_s] K_s \rightarrow 10^{-2}
\end{align*}
\]

\[
Σ \left[\frac{2DK}{b_s} \right]
\]

Ferkinghoff-Borg & Sams
Mol. BioSyst 10, 103 (2014)
doi: 10.1021/bi400315s