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Fundamental cavity–waveguide interplay in cavity QED

Emil V. Denning,1, ∗ Jake Iles-Smith,1, 2 Andreas Dyhl Osterkryger,1 Niels Gregersen,1 and Jesper Mork1, †

1Department of Photonics Engineering, DTU Fotonik,
Technical University of Denmark, Building 343, 2800 Kongens Lyngby, Denmark

2School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Interfacing solid-state emitters with photonic structures is a key strategy for developing highly
efficient photonic quantum technologies. Such structures are often organised into two distinct cat-
egories: nanocavities and waveguides. However, any realistic nanocavity structure simultaneously
has characteristics of both a cavity and waveguide, which is particularly pronounced when the cav-
ity is constructed using low-reflectivity mirrors in a waveguide structure with good transverse light
confinement. In this regime, standard cavity quantum optics theory breaks down, as the waveguide
character of the underlying dielectric is only weakly suppressed by the cavity mirrors. By consis-
tently treating the photonic density of states of the structure, we provide a microscopic description
of an emitter including the effects of phonon scattering over the full transition range from waveguide
to cavity. This generalised theory lets us identify an optimal regime of operation for single-photon
sources in optical nanostructures, where cavity and waveguide effects are concurrently exploited.

Solid-state emitters in photonic nanostructures play an
important role in quantum optics and photonic quan-
tum technologies [1–3], both as single-photon sources [4],
and more generally as light-matter interfaces [5, 6]. Such
nanostructures can be divided into two generic classes:
Nanocavities work by enhancing spontaneous emission
into a well-defined cavity mode through the Purcell ef-
fect [7], while simultaneously suppressing decoherence
mechanisms [8–13]. Waveguides exploit slow-light effects
in photonic crystal line defects [14–16] or screening effects
in e.g. nanowires [17, 18], such that spontaneous emis-
sion occurs preferentially into the desired channel, thus
achieving high efficiencies over a broad frequency range.
These two classes of structures are treated very differ-
ently in standard quantum optics theory. Nanocavities
are often modelled using a standard Jaynes-Cummings
treatment, where the electric field in the cavity is quan-
tised as a single optical mode [19], while waveguides are
modelled as an unstructured reservoir with a continuum
of optical modes with little or no spectral variation [20].
This is a problem in the regime of strongly dissipative
cavities, where neither of the two models provide a good
physical description.

To illustrate this point, consider a cavity embedded in
a waveguide structure defined by mirrors with variable
reflectivity (Fig. 1a). If the reflectivity of the mirrors is
decreased, intuitively one would expect a smooth transi-
tion between a strongly localised single-mode cavity, to
a standard broadband photonic waveguide, with an in-
termediate regime at low Q factors, where the optical
density of states simultaneously exhibits characteristics
of both a waveguide and cavity [21–24]. However, the
Jaynes-Cummings model does not demonstrate this be-
haviour, failing to describe the properties of emitters in
either a waveguide or bulk medium for vanishing Q fac-
tors.

In this paper, we present a quantum optical model
that captures the transition between a high-Q cavity

and a waveguide, allowing consistent treatment of waveg-
uides, lossy resonators and high quality cavities. Our
model constitutes a bridge between highly accurate op-
tical simulations of nanostructures [25] and microscopic
quantum dynamical calculations. This way, the quan-
tum properties of generated light can be calculated, while
fully accounting for the electromagnetic properties of the
nanostructure. The generality of this theory enables
us to identify an optimal regime of operation for quan-
tum dot single-photon sources, which simultaneously har-
nesses the high efficiency of a waveguide and the phonon-
suppressing spectral structure of a cavity.

We shall consider a two-level emitter placed in a waveg-
uide with two mirrors forming a Fabry-Pérot cavity (Fig.
1a). We denote the ground and excited states of the
emitter by |g〉 and |e〉, respectively, separated by the
transition frequency ωX . The electromagnetic field can
be described by a set of modes with annihilation and
creation operators, ak and a†k, frequencies ωk and emit-
ter coupling strengths gk. The Hamiltonian governing
the entire system takes the form H = HE + HF + HEF,
where HE, HF and HEF are the Hamiltonians govern-
ing the emitter, electromagnetic field and their interac-
tion, respectively. In the rotating wave approximation,
they take the standard forms (~ = 1): HE = ωX |X〉〈X|,
HF =

∑
k ωka

†
kak, and HEF =

∑
k gka

†
kσ + H.c., with

σ = |g〉〈e|. The k indices labelling the optical modes can
be divided into two sets: the first set, B, contains all the
modes with a certain transverse field profile of interest,
for example that of the fundamental waveguide mode; the
second set, R, accounts for non-guided radiation modes,
and guided modes with different transverse field profile
if the structure is not single-moded. Each mode set has
an associated local density of states (LDOS),

LS(ω) = π
∑
k∈S

|gk| 2δ(ω − ωk), S = B,R. (1)

In the absence of mirrors in the waveguide, both densities
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FIG. 1. (a) Schematic of a two-level emitter in a waveg-
uide structure with two mirrors forming a Fabry-Pérot cav-
ity. (b)–(d) Optical LDOS vs. frequency, scaled with the
free spectral range (FSR), at the position of the emitter for
mirrors with weak, intermediate and high reflectivity, respec-
tively.

can be considered constant over a large frequency range,
LS ' Γ0

S , where Γ0
S is the spontaneous emission rate of

the emitter into the mode set S (cf. Fig. 1b). How-
ever, when mirrors with amplitude reflectivities r1, r2

are added to the structure, LB becomes [26]

LB(ω) = Γ0
B Re

{
[1 + r̃1(ω)][1 + r̃2(ω)]

1− r̃1(ω)r̃2(ω)

}
, (2)

where Γ0
B is the emission rate into the waveguide in the

absence of mirrors, which is highly dependent on the lo-
cal field strength and position of the emitter. The phase
accumulated during propagation in the cavity is given
by the effective complex reflectivity coefficient r̃j(ω) =

rje
i[φj

0+Lβ(ω)], where φj0 is a mirror reflection phase, L is
the cavity length, and we assume a dispersion-less prop-
agation factor, β(ω) = neffω/c, where neff is the effective
refractive index of the waveguide mode. For simplicity,
we have assumed that the emitter is placed in the middle
of the cavity. Further, since the mirror reflection phase
only amounts to a shift in resonance and the position
of the field antinodes in the cavity, they may be safely
neglected.

Importantly, for intermediate reflectivities, the LDOS
features a Lorentzian lineshape offset by a constant back-
ground [26], as shown in Fig. 1c, where (2) is plotted
for r1 = r2 = 0.2. The background contribution to the
LDOS, ΓB, stems from the waveguide nature of the di-
electric structure, while the Lorentzian peak is a signa-
ture of the cavity quasi-mode, which becomes the domi-
nant contribution to the LDOS as r ' 1 (cf. Fig 1d).
To separate these two contributions from each other,
we approximate the LDOS, (2), as LB(ω) ' L̄B(ω) =
ΓB + Lc κ̃

κ̃2+ω̃2 , where we have introduced the dimen-
sionless frequency ω̃ = Lneff(ω − ωc)/c and linewidth,
κ̃ = κ(Lneff/c). The LDOS weights ΓB and Lc determine

the contributions from background waveguide modes and
the cavity, respectively. In the Supplemental Information
(SI), we show how the mirror reflectivities r1 and r2, and
the bare waveguide emission rate Γ0

B uniquely determine
all three parameters ΓB, Lc, and κ̃. Furthermore, Lc, L,
and neff determine the emitter–cavity coupling strength,
g =

√
cLc/(4Lneff).

In Fig. 2a, the contribution to the LDOS from waveg-
uide background modes and the cavity quasimode is
shown as functions of the mirror reflectivity for a sym-
metric cavity (r1 = r2 ≡ r). These depend solely on
the mirror reflectivity and show clearly how the system
is gradually transformed from a waveguide for r = 0, to a
cavity with full suppression of the waveguide background
as r → 1. Similarly, the variation of the emitter–cavity
coupling strength is shown in Fig. 2b. While g is normally
assumed to depend only on the cavity mode volume, V ,
we see here that g → 0 as r → 0, since the cavity does not
contribute to the LDOS in this limit. As the reflectivity
increases, g approaches the value gmax =

√
Γ0
Bc/(2Lneff)

(dotted lines in Fig. 2b). This is consistent with the con-
ventional scaling of g as ∼ 1/

√
V , noting that Γ0

B ∼ 1/A
with A the transverse mode area. Fig. 2c shows how the
cavity linewidth tends to zero as the mirror reflectivity is
increased. Importantly, the linewidth does not diverge as
r → 0, but rather approximately converges to the value
κmax = 2c/(neffL) (dotted lines in Fig. 2c), which is the
inverse of the time it takes for light to propagate from
the middle of the cavity to one of the mirrors [15].

From these parameters, we are able to derive a quan-
tum optical master equation to describe the dynamical
and optical properties of the emitter (see SI for details),

ρ̇(t) = −i[g(â†σ + âσ†), ρ(t)] + (ΓB + ΓR)D[σ] + κD[â].

(3)

where â (â†) is the annihilation (creation) operator for
the cavity mode, and D[x] = xρ(t)x† − 1

2{x†x, ρ(t)} is
the Lindblad dissipator. In the vanishing mirror limit,
r = 0, we have g = 0, ΓB = Γ0

B, and the master equation
reduces to the usual waveguide case. Conversely, in the
high reflectivity limit, r → 1, the waveguide contribution
to the LDOS vanishes, ΓB → 0 and the master equation
describes an emitter coupled to a cavity quasimode and
a radiation bath.

If the waveguide structure is single-moded, the emis-
sion rate ΓR only accounts for emission into radiation
modes out of the waveguide structure, and it can be taken
independent of the mirror reflectivity, ΓR ' Γ0

R. How-
ever, if the structure is multi-moded, ΓR also accounts
for emission into waveguide modes with different trans-
verse field distribution than B. The cavity mirrors also
modulate the LDOS for these modes, such that the total
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FIG. 2. (a) Contributions to LDOS from waveguide, ΓB
(solid) and cavity, Lc (dashed) vs. mirror reflectivity, r1 =
r2 ≡ r. (b), (c) Dependence of emitter–cavity coupling rate,
g, and cavity decay rate, κ, on mirror reflectivity for cavities
with L = 1 µm (red) and L = 4 µm (black). Other parame-
ters: Γ0

B = 0.3 µeV, neff = 2.5. The limiting values gmax and
κmax are indicated in (b) and (c) with dotted lines.

LDOS of the radiation reservoir, R, becomes

LR(ω) = ΓRM +
∑
m

Γ0
m Re

{
[1 + r̃m1 (ω)][1 + r̃m2 (ω)]

1− r̃m1 (ω)r̃m2 (ω)

}
,

(4)

where ΓRM is the emission rate into radiation modes and
the sum runs over all other mode families in the waveg-
uide, except for the B mode of interest. In the absence
of cavity mirrors, we have the spontaneous emission rate,
Γ0
m, and complex reflectivity, r̃mj (ω) = rmj e

i[φj+Lβm(ω)],

associated to the mth mode, where βm is the correspond-
ing propagation constant. Presuming that the emitter
is only resonant with the mode of interest, we can as-
sume weak coupling to the remaining modes, such that
the emitter decay into R is simply described by the spon-
taneous emission rate ΓR = LR(ωX).

We now apply our formalism to the case of a quantum
dot (QD) single-photon source in a dielectric waveguide
structure with mirrors, taking scattering with longitudi-
nal acoustic phonons into account. We take one cavity
mirror to be perfectly reflecting and the other to have
a finite reflectivity, r1 = 1, r2 ≡ r. Due to interfer-
ence effects, the presence of a perfectly reflecting mirror
modulates the LDOS by a sinusoidal variation with a pe-
riod of the free spectral range, Lneff/c, even in the limit
r = 0. If the frequency range of interest is appreciably
smaller than this range, as is often the case for a QD
in a nanocavity, we find that the effect of the perfect
bottom mirror can be implemented by using the renor-
malised rates, Γ0∗

B = 2Γ0
B and κ∗ = κ/2, where Γ0

B and κ

are calculated assuming a symmetric cavity as in Fig. 2.
This means that in the limit of a vanishing front mirror
reflectivity, the renormalised β factor in the presence of
the back mirror is β∗ = 2Γ0

B/(2Γ0
B + ΓR) = 2β/(β + 1).

Here, β = Γ0
B/(Γ

0
B+ΓR) is the waveguide β factor in the

absence of both mirrors, not to be confused with the wave
propagation constant. Furthermore, we assume that the
underlying waveguide structure is single-moded such that
ΓR = ΓRM can be considered constant.

The total Hamiltonian of the system is given by H =
HE +HF +HEF +HP +HEP, with HP and HEP the free
phonon and emitter–phonon Hamiltonians, given by [27,
28]

HP =
∑
q

νqb
†
qbq, HEP = |e〉〈e|

∑
q

Mq(bq + b†q), (5)

where bq (b†q) is the annihilation (creation) operator
for the phonon mode with wavevector q, with associ-
ated frequency νq, and exciton coupling strength Mq.
The phononic spectral density is given by J (ν) =∑

qM
2
qδ(ν − νq) = αν3 exp

[
−ν2/ν2

c

]
, where α is the

exciton–phonon coupling parameter and νc the cutoff
frequency [29]. To calculate the dynamics and account
for non-Markovian phonon relaxation, we make use of
the polaron theory [12, 29–33]. This is done by first
applying the unitary transformation T = exp(|e〉〈e|S)
to the Hamiltonian, H → Ĥ = T HT †, where S =∑

q ν
−1
q Mq(b†q−bq). In this frame, an equation of motion

for the reduced state of the QD that is non-perturbative
in the electron-phonon coupling strength may be derived
(see SI for details). For completeness, we also include a
pure dephasing process [13] with rate γ, which accounts
for dephasing from charge noise [34], spin noise and vir-
tual electron–phonon scattering [35, 36].

The indistinguishability of photons emitted from the
QD into detected modes [12, 37] can be calculated using
tools from optical theory [38, 39], as discussed in the SI.
This leads to

I = [2PB/Γ0
B]−2

∫ ∞
−∞

dω dω′ |G∗(ω)G(ω′)S0(ω, ω′)|2,
(6)

where G(ω) = [1+ r̃1(ω)]t2[1− r̃1(ω)r̃2(ω)]−1 accounts for

the cavity filtering, PB = (Γ0
B/2)

∫∞
−∞ dω |G(ω)| 2S0(ω, ω)

is the total power in the B modes, and S0(ω, ω′) =∫∞
−∞ dtdt′ ei(ωt−ω

′t′) 〈σ†(t)σ(t′)〉 is the two-colour dipole
spectrum. The two-colour spectrum may be sepa-
rated into two contributions S0 = SZPL + SPSB, where
SZPL describes emission into a sharp zero-phonon line
(ZPL) from direct exciton relaxation, and SPSB cor-
responds to a broad phonon sideband (PSB) where a
phonon and a photon are simultaneously emitted. Cen-
trally, the Franck-Condon factor, B2, is the fraction
of photons emitted into the ZPL, if the electromag-
netic LDOS is frequency independent [12]. Here, B =
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B = 1.1 µeV.

Tr[B+e
−HP/(kBT )]/Tr[e−HP/(kBT )], where T is the tem-

perature and kB is the Boltzmann constant. The ef-
ficiency is defined as the ratio of energy emitted into
the desired waveguide mode and the total emitted en-
ergy. It is calculated as E = PB/(PB + PR), where
PR = ΓR

∫∞
−∞ dω S0(ω, ω). In Fig. 3, the efficiency and

indistinguishability are plotted versus transmittivity of
the finitely reflecting cavity mirror for identical waveg-
uide structures with cavity lengths L = 1

2λX/neff (solid)
and L = 15λX/neff (dashed), where λX is the QD tran-
sition wavelength, taken as 950 nm. For clarity, γ has
been set to 0.

In the weak emitter–cavity coupling regime, the cavity
resonance is broad compared to the ZPL, but can still
vary appreciably over the PSB, meaning phonon-assisted
QD relaxation is suppressed and the ZPL is Purcell en-
hanced. In this parameter regime, we may generalise the
results of Ref. [12] to obtain analytical expressions taking
into account the waveguide–cavity interplay,

I =
Γtot

Γtot + 2γtot

[
(ΓB + Γcav)B2

(ΓB + Γcav)B2 + 2Γ0
BF (1−B2)

]2

(7)

E =
(Γcav + ΓB)B2 + 2Γ0

BF (1−B2)

(Γcav + ΓB)B2 + 2Γ0
BF (1−B2) + ΓR

, (8)

where F = [
∫

dω SPSB(ω, ω)]−1 1
4

∫
dω |G(ω)|2SPSB(ω, ω)

is the fraction of the PSB not removed by filter-
ing imposed by the electromagnetic LDOS, γtot =
γ + 2π(gB/κ)2J (2gB) coth(gB/(kBT )) is a phonon-
enhanced pure dephasing rate and Γtot = Γcav +ΓB+ΓR.
In the limit t = 1, (8) reduces to E = Γ0∗

B /(Γ
0∗
B + ΓR),

meaning the efficiency converges towards β∗, as the front
mirror is gradually removed (black dotted line in Fig. 3a).
If the waveguide mode contribution to the LDOS were ig-
nored, the efficiency would approach zero as r → 0 [12],
which is only a valid approximation when the underlying

waveguide structure has a vanishing β factor. In the ab-
sence of pure dephasing, γ = 0, (7) gives I → B4 (black
dotted line in Fig. 3b) as t→ 1, consistent with Ref. [12].

Contrarily, in the strong emitter–cavity coupling
regime, g > κ, the cavity and exciton hybridise and form
a polariton pair. In this case, the phonons drive inco-
herent transitions between the two polaritons, leading to
a decreased photon indistinguishability. To resolve this
effect, quantisation of the cavity becomes crucial, and a
semi-classical weak light-matter coupling theory is insuf-
ficient. As seen in Fig. 3b, increasing the cavity length
leads to a smaller g, which allows further narrowing of the
cavity line and thus suppression of the phonon sideband
without entering the strong coupling regime, due to a
larger cavity mode volume. Since the underlying waveg-
uide structure has a high β factor, the efficiency does
not suffer noticeably from this. The efficiency starts to
decrease when κ becomes small enough that the photon
escapes the cavity by scattering to radiation modes via
the QD rather than dissipating through the mirror. In-
creasing the cavity length will continue to improve the
coherence of emitted photons until the cavity free spec-
tral range becomes comparable to the width of the PSB,
which will then become Purcell enhanced. For typical
QDs, the PSB extends over a few meV, and the cavity
would need a length of 50− 100µm for this effect to set
in.

In conclusion, we have characterised the important role
of weakly suppressed waveguide modes in nanocavities.
As a demonstration of this, we have shown that long
nanocavities based on high β factor waveguides consti-
tute a promising new route to high-performance single
photon sources.
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