Production of higher alcohols from CO and H2

Schumann, Max; Jensen, Anker Degn; Nielsen, Monia Runge; Hansen, Thomas Willum; Christensen, Jakob Munkholt

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Production of higher alcohols from CO and H₂

Max Schumann¹, Anker Degn Jensen¹, Monia Runge Nielsen², Thomas Willum Hansen², Jakob Munkholt Christensen¹.

¹Department of Chemical and Biochemical Engineering, ²Center for Electron Nanoscopy, Danmarks Tekniske Universitet, Saltofts Plads, 2800 Lyngby, Denmark

Combined mechanistic and catalytic reactor studies were applied to gain mechanistic insights into the catalytic cycle of producing C₂⁺-oxygenates (C₂-O) from CO and H₂ over supported single metallic Rh catalysts.

Background

Supported metallic Rh has been shown to form C₂-O with a wide range of selectivities and CO conversion levels [1,2]. The present study seeks to understand the origin of this wide spread and become able to make catalysts with high C₂-O selectivity at simultaneous high syngas conversion at an acceptable level of metal loading.

Catalytic performance during the CO-H₂ reaction for 1% Rh dispersed on SiO₂ or ZrO₂ – impact of CO/H₂ pressure

Role of in situ formed MeOH as reactant

Significant levels of ester products were found at high CO/H₂ pressure conditions. It was shown, that surface C₂-O precursor adsorbates can react in a H₂/MeOH atmosphere to methyl acetate.

Topological changes to the Rh catalyst

RhCl₃-derived catalysts are reported to be better C₂-O producing catalysts. Remaining Cl is assumed to mobilize the Rh through involvement in formation of Rh-carbonyl complexes.

- 50 bar CO-H₂ reaction treatment of 3% Rh/SiO₂ (from RhCl₃) resulted in a complete depletion of the Rh. Most likely due to volatility of formed carbonyls.

Outlook

- In situ EXAF: Rh/support exposed to different CO pressures.
- Environmental TEM – identifying possible topological changes of the Rh during the exposure to CO atmospheres.

References