Luminescence age constraints on the Pleistocene-Holocene transition recorded in loess sequences across SE Europe

Published in:
Quaternary Geochronology

Link to article, DOI:
10.1016/j.quageo.2018.07.011

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Luminescence age constraints on the Pleistocene-Holocene transition recorded in loess sequences across SE Europe

D. Constantina,*, D. Veresa,b, C. Panaiotuc, V. Anechitei-Deacua,d, S.M. Grozaa,d, R. Begya,d, S. Kelemena,d, J.-P. Buylaerte,f, U. Hambachg, S.B. Markovićh, N. Gerasimenkoi, A. Timar-Gabora,d

a Interdisciplinary Research Institute on Bio-Nano-Science of Babeș-Bolyai University, Treboniu Laurian 42, 400271, Cluj-Napoca, Romania
b Romanian Academy, Institute of Speleology, Clinicul 5, 400006, Cluj-Napoca, Romania
c University of Bucharest, Faculty of Physics, A. D. Ungureanu 1, 060021, Bucharest, Romania
d Faculty of Environmental Sciences and Engineering, Babeș-Bolyai University, Fănațele 30, 400294, Cluj-Napoca, Romania
e Center for Nuclear Technologies, Technical University of Denmark, DTU Risø Campus, Roskilde, Denmark
f Nordic Laboratory for Luminescence Dating, Department of Geoscience, Aarhus University, Risø Campus, Roskilde, Denmark
g BayCEER & Chair of Geomorphology, University of Bayreuth, Universitätsstraße 30, 94450, Bayreuth, Germany
h Laboratory for Paleoenvironmental Reconstruction, Faculty of Sciences, University of Novi Sad, Tryg Dostoje Obradovića 2, 21000, Novi Sad, Serbia
i Earth Sciences and Geomorphology Department, Tara Shevchenko National University of Kyiv, Glazkova Prospect 2a, 03127, Kiev, Ukraine

\section{1. Introduction}

The need for a better understanding of past environmental change has led to increasing efforts in improving chronologies for paleoclimate records worldwide (Blockley et al., 2012; Veres et al., 2013; Lisiecki and Raymo, 2005; Govin et al., 2015). For loess-paleosol sequences (LPS), as the most extensive paleoclimate archives on land, the issue is even more compelling, as in many cases the chronological control is often achieved only by matching and/or tuning to other records (Marković et al., 2015 and references therein). Loess is amenable to OSL dating as shown by previous studies (Roberts, 2008; Stevens et al., 2011, 2018).

It is generally assumed that dust deposition is enhanced during glacial times, whereas pedogenetic processes are stronger during warm-
wet climates, potentially those associated with interglacial periods (Maher et al., 2003). For LPS, the climatic transitions are recorded by changes in magnetic susceptibility; a proxy that solely reflects the strength of pedogenetic processes in cases where the parent loess is mineralogically homogenous. The magnetic susceptibility record in LPS is often wiggle matched or tuned to ice records or marine sediments proxies. This is based on the assumption that the climatic changes reflected in the terrestrial, marine or ice records are synchronous, at least at glacial-interglacial transitions (Marković et al., 2015 and references therein; Zeeden et al., 2018). For example, the transition between Late Glacial and Holocene dated at 11.7 ka ago based on the layer-counted GICC05 timescale (Rasmussen et al., 2014; Svensson et al., 2008) is probably the most easily identifiable. Moreover, this transition occurs over a time range that can be dated with numerous techniques. However, a recent study comparing radiocarbon records over the most recent deglaciation highlighted differences in the timing of the benthic δ18O change in various marine records, globally (Stern and Lisiecki, 2014). If the synchronicity assumption does not hold even for the most recent glacial/interglacial transition, then the whole approach behind the magnetic and pedostratigraphic timescale tuning when linking loess chronologies, for example, to the marine isotopic time-series (Marković et al., 2015; Zeeden et al., 2018), must be reassessed.

In this study we have investigated three LPS that display a relatively rapid variation in their magnetic susceptibility records across the last glacial loess (L1) - Holocene soil (S0) transition. These three sites follow a transect in southeastern Europe, from the Dnieper river to the Carpathian Basin (Fig. 1). Our aim is to identify the onset of enhanced concretions (from 1 to 2 cm in diameter). Here, eleven OSL samples have been collected from the topmost 1 m, closely encompassing the visual L1/S0 transition. Part of the material from each sample has also been used for magnetic analysis.

The Mošorin Veliki Surduk site (45.3° N and 20.2° E; 116 m) is located on the western slope of a 35 m deep gully, at the southern edge of Mošorin village on the Titel Loess Plateau, Vojvodina, Serbia (Fig. 1 and Fig. S3). Perić et al. (in press) reported a quartz OSL chronology for the upper last glacial cycle recorded at a site, located some tens of meters to the east of the one investigated in this study. The basal last glacial loess is very porous and in some parts intensively affected by syndepositional bioturbation. Many spherical, relatively soft carbonate nodules and humus inclusions in old root channels are expressed at the contact zone with the Holocene soil. The S0 spans the upper 45 cm of the section with an upper steppic Ah horizon and a lower transitional horizon (the lowermost 15 cm) containing small soft spherical carbonate concretions (from 1 to 2 cm in diameter). Here, eleven OSL samples have been collected from the topmost 1 m. Sampling for magnetic analysis was carried out at 5 cm resolution.

2. Sampling and site descriptions

Luminescence samples were collected to bracket, as closely as possible, the transition between the loess (L1) and the Holocene soil (S0), as identified visually in the field. The L1/S0 transition was tentatively identified as the visual boundary between proper loess and the underlying humus rich (A1 horizon) S0 soil – the transitional zone would refer to the interval encompassing the genetic horizons (other than A1) of S0 that are clearly visible at all sites. The samples for OSL dating and magnetic measurement have been collected from the areas unaffected by syndepositional bioturbation, if this issue was identified at the sampling sites. Syndepositional bioturbation is not considered an issue in the luminescence dating studies because it usually affects hundreds of years of depositions, which are encompassed in the total errors of the OSL ages, which are around 1 ka for such young samples.

The Roxolany outcrop (46.2° N, 30.5° E) is situated on the left bank of the Dniester estuary, about 40 km southwest of Odessa, in southwestern Ukraine (Fig. 1 and Fig. S1). It is one of the most representative LPS in Eastern Europe (Nawrocki et al., 2018 and references therein), but limited investigations have been conducted on the L1/S0 transition. Seven luminescence samples were collected from the topmost 2.2 m, whereas samples for magnetic analysis were taken contiguously over 2 cm increments. The sequence consists of pale yellowish loess below ca. 95 cm depth, capped by a transitional horizon between 60 and 95 cm depth with increasing carbonate content towards the lower boundary. The upper part (0–50/60 cm depth) consists of a dark-grey to brownish chernozem soil.

The Râmnicu Sârat loess-paleosol (45.4° N, 27.0° E; 160 m) sequence is located on the left bank of the Râmnicu Sârat river valley in central-eastern Romania (Fig. 1 and Fig. S2). In the field, the transition from L1 loess to S0 soil in terms of color change is gradual, spreading from 110 cm to 130 cm depth. Twelve luminescence samples have been collected from the topmost 1.6 m, closely encompassing the visual L1/S0 transition. Part of the material from each sample has also been used for magnetic analysis.

3. Methods and instrumentation

3.1. Magnetic susceptibility

For samples collected from the Roxolany and Mošorin Veliki Surduk sections, the volumetric magnetic susceptibility was measured at frequencies of 300 Hz and 3000 Hz in a static field of 300 mA/m using a Magnon International VSFM (sensitivity ∼10^-7 SI) at University of Bayreuth, Germany. For the samples from the Râmnicu Sârat section the magnetic susceptibility was measured with an AGICO MFK1-FA Kappabridge (sensitivity ∼ 2 × 10^-8 SI) using a magnetic field of 200 A/m and two frequencies: 976 Hz and 15616 Hz at University of Bucharest, Romania. All data were corrected for drift and for the effect of holder and sampling boxes (weak diamagnetism) and normalized to

![Fig. 1. Loess distribution in southeastern Europe (after Haase et al., 2007). The loess sites investigated in this study are indicated with filled stars. The acronyms indicate the major cities. Mo.: Moscow, Kl.: Kiev, Kl.: Kishnev, Bu.:Bucharest, Mi.: Minsk, Vl.:Vilnius, Wa.: Warsaw, Bu.: Budapest, Be.: Belgrade, Sa.: Sarajevo.](image-url)
mass. Frequency dependence of magnetic susceptibility was expressed as a mass-specific loss of susceptibility \(X_m = X_r - X_{Sr}\), where \(X_r\) and \(X_{Sr}\) are the magnetic susceptibility measured at low and high frequency, respectively (Dearing et al., 1996).

3.2. Optically stimulated luminescence dating

3.2.1. Sample preparation

In subdued red light in the laboratory, the material from each end of the samples was dried, finely milled and packet for gamma spectrometry measurements. Standard procedures were applied on the remaining core material in order to extract quartz grains with the following grain-sizes: 4–11 μm, 63–90 μm and 90–125 μm (where available) and polyn mineral fine (4–11 μm) grains. More details on sample preparation can be found in the Supplementary Material. The 4–11 μm quartz and polyn mineral fractions were mounted on aluminium disks from a suspension in acetone (2 mg/ml). Coarse (> 63 μm) quartz grains were then fixed using silicone oil onto 9.7 cm stainless steel disks.

3.2.2. Equivalent dose determination

Luminescence measurements have been carried on standard Risø TL/OSL DA-20 readers (Thomsen et al., 2006). Quartz luminescence investigations were performed using the single-aliquot regenerative dose (SAR) protocol (Murray and Wintle, 2000, 2003). The luminescence signals were stimulated with blue light emitting diodes for 40 s at 125 °C. The net CW-OSL (optically stimulated luminescence) signal was selected from the first 0.308 s of the decay curve minus an early background subtracted from the 1.69–2.3 s interval. The OSL response to a fixed test dose of 17 Gy was used throughout the whole set of measurements to correct for sensitivity changes. At the end of each SAR cycle a high-temperature bleach for 40 s at 280 °C was performed by stimulation with blue diodes (Murray and Wintle, 2003). Equivalent doses have been measured on fine (4–11 μm) and coarser (63–90 μm and 90–125 μm if available) quartz extracts from Roxolany and Mošorin, while for Rămnicu Sărat only the 63–90 μm quartz fraction was investigated.

For the sake of consistency, feldspar infrared luminescence investigations were performed on 4–11 μm polyn mineral grains extracted from the Mošorin samples by applying the post-IR IRSL290 protocol (Thiel et al., 2011). The samples were preheated to 320 °C for 60 s and exposed to IR diodes for 200 s at 50 °C to allow recombination of near-neighbour trap and centre pairs. The post IR IRSL signal was stimulated with IR LEDs at 290 °C for 200 s. The net signal was integrated from the initial ~2.3 s of stimulation, less a background from the last 20 s. A test dose of 14 Gy was used to monitor for the sensitivity changes and a high-temperature bleach for 100 s at 325 °C was performed at the end of each cycle in order to remove residual charge. Residual doses were determined on five natural aliquots from samples MVS 3, 4, 7 after 4 h bleaching in a SOL2 solar simulator (Thiel et al., 2011; Buylaert et al., 2012). An average residual dose was calculated from the bleached aliquots and was subtracted from the equivalent doses obtained for the rest of the samples.

Standard performance tests (recycling and recuperation) (Murray and Wintle, 2003) tests have been included in every measurement. The purity of the quartz extracts was confirmed by OSL IR depletion tests (Duller, 2003) on all aliquots measured. Recycling ratios and OSL IR depletion ratios within a maximum deviation of 10% from unity were considered suitable, as was a recuperation signal amounting to less than 2% of the natural signal.

3.2.3. Dosimetry

The annual dose rates were calculated based on radionuclide specific activities measured by means of high resolution gamma spectrometry using a well-type HPGe detector. Samples have been stored for at least one month in order to achieve \(^{226}\text{Ra}^{228}\text{Rn}\) equilibrium. The surveyed gamma lines in the \(^{238}\text{U}\) series were 63.29 keV (\(^{234}\text{Th}\), 92.38 keV (\(^{234}\text{Th}\)), 92.8 keV (\(^{234}\text{Th}\)), 351 keV (\(^{214}\text{Pb}\), 295 keV (\(^{214}\text{Pb}\), 603.3 keV (\(^{214}\text{Bi}\)) and 46.5 keV (\(^{210}\text{Pb}\)). The used gamma lines from the \(^{232}\text{Th}\) series were 338 keV (\(^{228}\text{Ac}\)), 911 keV (\(^{228}\text{Ac}\)), 238 keV (\(^{211}\text{Pb}\)), 583 keV (\(^{208}\text{Tl}\)). The 1461 keV peak was used to determine the specific activity of \(^{40}\text{K}\). In order to assess whether the radioactive equilibrium prevailed at the investigated sites daughter to parent ratios (\(^{226}\text{Ra}:^{234}\text{Th},^{212}\text{Pb}:^{228}\text{Ac}\)) have been calculated for the two radioactive series (Fig. S5 inset and Fig. S6).

The dose rates were derived based on the conversion factors tabulated by Adamiec and Aitken (1998). The beta attenuation and etching factor for 63–90 μm and 90–125 μm was assumed to be 0.94 ± 0.05 and 0.92 ± 0.05, respectively (Mejdahl, 1979). The alpha efficiency value was taken as 0.04 ± 0.02 for quartz and as 0.08 ± 0.02 for polyn mineral fine-grains (Rees-Jones, 1995). The time averaged water content was taken as the difference between the natural ‘as found’ weight and the oven-dried weight of the material with a relative error of 25%. The total dose rate includes the external contribution from beta and gamma radiation (additionally alpha radiation contributions for the 4–11 μm grains), as well as the cosmic ray contribution. The cosmic ray dose rate was estimated for each sample as a function of depth, altitude and geomagnetic latitude (Prescott and Hutton, 1994). The internal dose rate contribution for the coarse quartz fraction was assumed to be 0.010 ± 0.002 Gy/ka (Vandenberghe et al., 2008).

4. Results and discussion

4.1. Luminescence properties and equivalent doses

The decay of the luminescence emission with stimulation time is represented in insets of Fig. S4 a, b, c. The quartz luminescence signals from all samples displayed a sharp decay down to 20% of the initial signal within the first second of stimulation. The fast decay rate is comparable to that displayed by the calibration quartz luminescence signal (insets Fig. S4 b and c). The growth of the OSL signal is best fitted by the sum of two saturating exponential functions using the Origin 8 program:

\[
I(D) = I_0 + A \left(1 - \exp\left(-\frac{D}{D_{01}}\right)\right) + B \left(1 - \exp\left(-\frac{D}{D_{02}}\right)\right)
\]

where \(I\) is the intensity of the signal for a given dose \(D\), \(I_0\) is the intercept, \(A\) and \(B\) are the saturation characteristics of the two exponential components and \(D_{01}, D_{02}\) are the doses that characterize the onset of saturation of each exponential function, also named characteristic doses in the literature. Representative dose response curves are shown in Fig. S4.

We have investigated the dependence of the equivalent doses on the heat treatments using a selection of quartz samples. Five aliquots were measured for each temperature combination. The preheat following the natural or regenerative dose was held for 10 s. Prior to test dose signal read out the aliquots were heated up to the cutheat temperature and immediately cooled. Fig. 2 shows that in neither case is there any systematic variation in \(D\), with preheat temperature in the 200–240 °C interval.

We have checked whether the SAR protocol can successfully recover a known irradiation dose given prior to any thermal treatment by employing the dose recovery test (Wallinga et al., 2000; Murray and Wintle, 2003). Sets of five natural aliquots were prepared from 63–90 μm quartz samples (ROX 1.4, RS 90, RS 100, RS 120, RS 150, RS 160, MVS 6 and MVS 9) and 4–11 μm quartz samples (ROX 1.4, MVS 6 and MVS 9). Their natural signal was bleached by exposure to two blue light emitting diode stimulations of 100 s at room temperature with an intervening pause of 10000 s. The aliquots then received beta irradiation doses that approximated their equivalent doses. These surrogate doses were then measured using the SAR protocol. The Roxolany and...
Fig. 2. Equivalent dose variations with the preheat temperature (heating treatment applied before natural and regenerative signal readout). The cutheat (heating sample before the test dose signal readout) used for Roxolany and Râmnicu Sărat sample varied from 160 °C for preheats of 180 °C, to 180 °C for preheats between 200 and 220 °C, to 220 °C for preheats higher than 240 °C. For the Mošorin Veliki Surduk sample, a cutheat of 160 °C was used throughout all measurements.

Râmnicu Sărat quartz samples were heated at 220 °C for 10 s before the natural or regenerative signal readout and to 180 °C and immediately cooled before stimulating the luminescence signal induced by the test dose. For the Mošorin samples, a preheat/cutheat combination of 200 °C/160 °C was chosen. As seen in Fig. 3 a, for the quartz samples, the SAR protocol accurately recovered the given doses within a 10% deviation from unity. Consequently, a preheat temperature of 220 °C for 10 s and a cutheat to 180 °C were employed throughout the SAR protocol for equivalent doses determination of Roxolany and Râmnicu Sărat quartz samples and a preheat/cutheat combination of 200 °C/160 °C for the Mošorin quartz samples. The dose recovery test was also applied on five polymineral fine grained aliquots from sample MVS 3. They were bleached in the solar simulator for 24 h to reduce the natural signal to a low level. A 40 Gy beta dose was then delivered and measured using the post-IR IRSL290 protocol described above. From the recovered dose a residual dose of 7.0 ± 0.4 Gy (determined after exposure for 4 h in the solar simulator) was subtracted. The post-IR IRSL290 overestimated the given dose yielding a dose recovery ratio of 1.23 ± 0.04, while the recycling and recuperation test were successfully passed for all measured aliquots. These results show that the quartz luminescence behavior of the investigated samples is appropriate for the measurement procedures applied. In contrast, the dose recovery results of the post-IR IRSL290 protocol applied to polymineral fine-grains is not satisfactory.

The equivalent doses and the number of aliquots used are given in Tables S1–3. The recycling, OSL IR depletion and recuperation ratio are displayed in Fig. 3 b. Relative standard deviation (RSD) and over-dispersion (OD) in individual multigrain equivalent dose data have been calculated for each sample (Fig. S7). They are generally below 20% with the exception of the uppermost soil samples, probably disturbed by agricultural activities, and don’t differentiate the loess from the soil samples. Such results are consistent with those on undisturbed loess samples reported in the literature (Lai and Wintle, 2006; Buylaert et al., 2008; Timar-Gabor et al., 2011, 2015). This ensures us that significant post-depositional mixing is unlikely to be an issue in the investigated samples.

As it can be seen from Table S3, the equivalent doses obtained on polymineral grains are systematically higher, sometimes beyond 100% of those obtained on fine grained quartz. This might be partly explained by the existence of unbeatable residuals of the post-IR IRSL signal. The post-IR IRSL290 signal is evicted from deeper, harder to bleach, traps in feldspars compared to the fast component sampled from quartz OSL signal (Thiel et al., 2011). The residual doses determined for the post-IR IRSL signal from polymineral fine-grains after 4 h SOL2 bleaching are large (up to 19 Gy, Table S3). Similar residuals have been observed for modern and young loess from China and Europe (Buylaert et al., 2011; Thiel et al., 2011). Moreover, the overestimated dose recovery test results using the post-IR IRSL290 protocol might explain better the overestimation of the feldspar equivalent dose results. This inaccurate dose recovery testifies to the poor suitability of the post-IR IRSL290 protocol for the investigated samples.

Fig. 3. a) Dose recovery test results. The given irradiation doses were chosen to match the equivalent dose of each sample. The thermal treatment of the Roxolany and Râmnicu Sărat quartz samples involved a 10 s preheat at 220 °C and a cutheat of 180 °C. Dose recovery test was repeated on two samples from Râmnicu Sărat using a 10 s preheat at 180 °C and a cutheat of 160 °C and are denoted with *. The fine and coarse quartz samples from Mošorin Veliki Surduk were measured using a 200 °C preheat for 10 s in combination with a cutheat of 160 °C. The polymineral fine grain sample from Mošorin Veliki Surduk was measured using the post-IR IRSL290 protocol (Buylaert et al., 2012). Before laboratory irradiation, the aliquots were bleached in the solar simulator for 24 h to ensure the removal of the natural signal. The solid line indicates the ideal 1:1 dose recovery ratio while the dotted lines bracket a 10% variation from unity. b) Intrinsic performance test results of the SAR protocol applied on all quartz samples are given with filled and open squares. The general behavior of the polymineral fine grains in the post-IR IRSL290 protocol are represented with filled and open triangles. Each point represents the average ratio obtained for each grain size fraction of each sample presented in this study. The solid line indicates the ideal recycling and IR depletion ratios, whereas the dotted lines bracket the accepted 10% deviation from unity.
4.1. OSL ages

The relevant information on the total annual dose rates is listed along with the OSL ages in Tables S1–3. Quantification of the radon loss was not possible due to large uncertainties and systematic severe underestimations for 210Pb measurements. However, a worst-case scenario in case of radioactive disequilibrium (considering significant 222Rn loss) is presented in Fig. S8. The OSL ages are generally correlated within error limits with those calculated assuming radioactive equilibrium. Based on this argument, throughout this study we discuss the OSL ages calculated assuming radioactive equilibrium in the uranium series.

Uncertainties on the ages were calculated following Aitken and Alldred (1972). The systematic errors are dominated by the uncertainties associated with the estimates for time-averaged water content, alpha irradiation efficiency in the case of fine grains, and beta attenuation factors. The relative systematic errors on the fine-grained quartz ages amount to 8–9%, while in the case of coarse fractions they are around 6%. The relative random errors for fine material are below 5%, while for the 63–90 μm and 90–125 μm fractions they are generally less than 9%.

The OSL results obtained on different quartz extracts provide coeval age ranges and are internally consistent. Therefore, weighted average fine and coarse quartz ages were calculated for Moșorin and Roxolan samples following Aitken (1985, Appendix B). The post-IR IRSL290 ages significantly overestimate the quartz data and are not considered further.

4.2. Dating of the magnetic susceptibility threshold

The rock magnetic data of loess-paleosol samples, such as low-field magnetic susceptibility (χ_{lf}) and its dependence on the frequency of the applied field (χ_{hf}) are generally reliable indicators for the intensity of soil forming processes, as well as chemical weathering of primary loess; the latter being a proxy for the exclusively pedogenetically formed fraction of ferrimagnetic minerals (Maher et al., 2003). As the intensity of pedogenesis is controlled mainly by hydroclimate variability, the trends in χ_{lf} and χ_{hf} are often regarded as reliable paleoclimate proxies (e.g. Buggle et al., 2014). As such, they were commonly employed in deriving tie-points both for the direct linking of loess-paleosol sequences with benthic δ18O stacks and for deriving age-models, especially over orbital time-scales (e.g. Necula and Panaitiu, 2008; Zeeden et al., 2018).

Most of the LPS sections from the Danube Basin and the Black Sea coast (e.g. Marković et al., 2015; Necula et al., 2015) and also from China (e.g. Dong et al., 2015) show a gradual increase of magnetic susceptibility from the Last Glacial Maximum (LGM) to the Holocene. This behavior is similar to the benthic δ18O changes (Stern and Lisiecki, 2014) observed over the most recent deglaciation (Termination 1). Following this, we have defined the threshold of the transition from the LGM to Holocene by adopting an approach similar to the one used by Stern and Lisiecki (2014). We have constrained the onset of the transition at the depth where both χ_{lf} and χ_{hf} values increase significantly and continuously compared to those values that characterize the last glacial loess (or more specifically the LGM loess).

At Roxolany the minimum χ_{lf} and χ_{hf} values lie around 137 cm. An OSL age of 21 ± 1.4 ka corresponds to this depth indicating that the loess has been deposited during the LGM (Fig. 4a). From this point up there is a gradual increase of both χ_{lf} and χ_{hf} until after 15.4 ± 1.1 ka, when a large and rapid jump in the magnetic signal is identified. However, the values start to increase significantly compared to those characteristic of the LGM around 87 cm. An OSL age of 16.6 ± 1.1 ka has been determined for the loess at this depth. We place the threshold in the magnetic susceptibility variation at 87 cm (Fig. 4a) and we interpret it as likely reflecting the onset of soil formation during the Pleistocene to Holocene transition (ie, the Late Glacial) at the Roxolany section. Based on linear regression of OSL ages with depth it seems that during the transition from the LGM to the Holocene the sedimentation rate seems to be constant. The nature and significance of the rapid increase observed in magnetic susceptibility values between 15.4 ± 1.1 ka and 8.6 ± 0.7 ka needs further investigation.

Both χ_{lf} and χ_{hf} at Râmnicu Sărat section display low values in the last glacial loess up to 140 cm depth (Fig. 4e, h). The OSL sample collected at this depth was dated to 17.6 ± 1.4 ka (Fig. 4b). A steady increase in the magnetic parameters is recorded between 120 cm and 70 cm. This pattern is similar to the one observed on a parallel section sampled at a higher resolution (5 cm) in the same place (Fig. S9, Dimolte, 2012). Thus, the threshold of the increase of magnetic susceptibility can be placed between 140 and 130 cm, taking place along a 10 cm interval at the bottom of the transitional zone from L1 to S0 observed in the field. The samples collected at these depths yielded OSL ages of 17.6 ± 1.4 ka and 12.4 ± 1.0 ka (Fig. 4b). The sedimentation rate after 12 ka is relative constant during the period of gradual increase of magnetic susceptibility.

At Moșorin, both χ_{lf} and χ_{hf} values increase significantly compared to those in the last glacial loess immediately above 45 cm (Fig. 4f, i). The OSL sample collected at this depth was dated to 13.5 ± 0.9 ka (Fig. 4c). From this depth and upwards, the χ_{lf} and χ_{hf} values increase continuously. By carrying out a regression of OSL ages with the depth down the section, a significant reduction in sedimentation rate can be also noticed around 13.5 ± 0.9 ka (Fig. 4c).

5. Conclusion

SAR-OSL dating of 4–11 μm, 63–90 μm and 90–125 μm quartz provided consistent ages for the transition from the last glacial loess to the modern soil in three loess-paleosol sites in southeastern Europe, while the post-IR IRSL90 protocol applied to polymineral fine-grains is not suitable for accurate dating of these young samples.

We have associated the L1/S0 transition with the threshold point at which the magnetic susceptibility enhancement becomes significantly higher than in the last glacial loess. Thus, the magnetic susceptibility threshold was placed around 16.6 ± 1.1 ka at Roxolany, 13.5 ± 0.9 ka at Moșorin and between 17.6 ± 1.4 ka and 12.4 ± 1.0 ka at Râmnicu Sărat. Due to the limitations imposed by the nature of the L1/S0 in the investigated sites, it is not possible to define a universal threshold in the magnetic susceptibility data that is valid for all the investigated sections and further investigations are in progress in other sites. However, the behavior of magnetic susceptibility reflects a gradual transition from the Last Glacial towards the Holocene. These results indicate that the onset of the magnetic signal enhancement produced by pedogenesis in the investigated sites in SE Europe started around Termination 1 (~17 ka in the North Atlantic) as observed in radiocarbon-dated regional benthic δ18O stacks (Stern and Lisiecki, 2014), but before the stratigraphic Pleistocene/Holocene transition dated at 11.7 ka in ice core records.
Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme ERC-2015-STG (grant agreement No [678106] awarded to Alida Timar-Gabor).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.quageo.2018.07.011.

References

