Enhancing the electro-mechanical properties of polydimethylsiloxane elastomers through blending with poly(dimethylsiloxane-co-methylphenylsiloxane) copolymers

Acknowledgments

Yu, Liyun; Jeppe Madsen, Peter; Boucher, Sarah; Skov, Anne Ladegaard

Publication date: 2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Enhancing the electro-mechanical properties of polydimethylsiloxane elastomers through blending with poly(dimethylsiloxane-co-methylphenylsiloxane) copolymers

Liyun Yu, Peter Jeppe Madsen, Sarah Boucher, Anne Ladegaard Skov*
Technical University of Denmark, Danish Polymer Centre

al@kt.dtu.dk

- Electrical treeing
- Failure of insulation material

- Phenyl group - electron-trapping effect
- Disturbance of cloud of π-electrons - anion radicals
- Voltage stabiliser
2.2.14 Enhancing the electro-mechanical properties of polydimethylsiloxane elastomers through blending with poly(dimethylsiloxane-co-methylphenylsiloxane) copolymers

Liyun Yu, Peter Jeppe Madsen, Sarah Boucher, Anne Ladegaard Skov*
Technical University of Denmark, Danish Polymer Centre
al@kt.dtu.dk

Anionic Ring-Opening Polymerisation

Phenyl-PDMS copolymer in PDMS matrix
Enhancing the electromechanical properties of polydimethylsiloxane elastomers through blending with poly(dimethylsiloxane-co-methylphenylsiloxane) copolymers

Liyun Yu, Peter Jeppe Madsen, Sarah Boucher, Anne Ladegaard Skov*
Technical University of Denmark, Danish Polymer Centre

2.2.14

Table 1: Overview properties of the statement

Acknowledgements

References