Hidden hearing loss with envelope following responses (EFRs): The off-frequency problem

Encina-Llamas, Gerard; Parthasarathy, Aravindakshan; Harte, James Michael; Dau, Torsten; Kujawa, Sharon G.; Shinn-Cunningham, Barbara; Epp, Bastian

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Hidden hearing loss with envelope following responses (EFR): The off-frequency problem

Gerard Encina-Llamas¹, Aravindakshan Parthasarathy², James M. Harte³, Torsten Dau¹, Sharon G. Kujawa², Barbara Shinn-Cunningham⁴ and Bastian Epp¹

¹ Hearing Systems, Technical University of Denmark (DTU) - ² Harvard Medical School (MEEI - HMS) - ³ Interacoustics Research Unit (IRU) - ⁴ Boston University (BU)

Introduction

Recent animal studies have shown that noise over-exposure can cause the loss of auditory nerve (AN) fiber synapses without causing hair cell loss (see Kujawa and Liberman (2015) for a review). This AN fiber synapses loss has been termed “hidden hearing loss” or “synaptopathy”, since it is not reflected in the traditional pure-tone threshold. The envelope following response (EFR) has been proposed as a potential objective method to assess synaptopathy in humans (i.e., Bharadwaj et al., 2015). Encina-Llamas et al. (2016) reported different trends in EFR level-growth functions recorded using two modulation depths in normal-hearing (NH) and mild hearing-impaired (HI) listeners. The EFR is a gross encephalographic potential that represents the encoding of the envelope of the stimulus, arising from synchronized neural activity from all excited frequencies and fibers. In this study, a computational model of the AN was used to investigate the effects of off-frequency contributions (i.e. away from the characteristic place of the stimulus) and the differential loss of different AN fiber types on EFR level-growth functions.

Methods

Model:
- Human AN model (Zilany et al., 2014).
- 200 characteristic frequencies (CF), ranging from 0.2 to 20 kHz.
- Synapses per IHC are simulated by several independent computations of each AN CF (about 100 per CF). Synaptopathy is simulated by computing less of such independent computations.

Levels:
- EFR level-growth: 5 to 100 dB SPL, 5 dB steps.
- EFR in noise: -30 to 40 dB SNR, 5 dB steps. Fix SAM at 70 dB SPL.
- EFR level-growth: 5 to 100 dB SPL, 5 dB steps.

Stimuli:
- 2000 Hz (J stimuli) or 93 Hz (as in Encina-Llamas et al., 2016).

Research Question

- Can a phenomenological AN computational model explain the different trends observed in the EFR level-growth functions in NH and mild-HI listeners reported in Encina-Llamas et al., (2016)?

Simulations I

Normal-hearing:
- Across frequency
- ON frequency (13 oct. band at 2 kHz)
- OFF frequency (13 oct. band at 2 kHz)

Simulations II

Broadband noise:
- Synap. fitted to Encina-Llamas (2016)

Notch noise:
- Synap. fitted to Encina-Llamas (2016)

Conclusion

- EFRs at high stimulus levels are dominated by the off-frequency contributions.
- EFRs are dominated by the responses from high-SR fibers.
- EFR level-growth functions from synaptopathic trends in exposed mice show similar trends to EFR functions in some NH human listeners (see poster P9 by Arvind Parthasarathy et al.).

ACKNOWLEDGMENT

Research supported by the Ohio Center of Excellence for Hearing and Noise-Related Research (OH-BR/UI) at OSU, in collaboration with CompNet at BU, and by DOD W81XWH-15-1-0103 (SGK) at HMS.

REFERENCES