Characterization of the enhancer and promoter landscape of inflammatory bowel disease from human colon biopsies

Boyd, Mette; Thodberg, Malte; Vitezic, Morana; Bornholdt, Jette; Vitting-Seerup, Kristoffer; Chen, Yun; Coskun, Mehmet; Li, Yuan; Lo, Bobby Zhao Sheng; Klausen, Pia

Published in:
Nature Communications

Link to article, DOI:
10.1038/s41467-018-03766-z

Publication date:
2018

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Inflammatory bowel disease (IBD) is a chronic intestinal disorder, with two main types: Crohn’s disease (CD) and ulcerative colitis (UC), whose molecular pathology is not well understood. The majority of IBD-associated SNPs are located in non-coding regions and are hard to characterize since regulatory regions in IBD are not known. Here we profile transcription start sites (TSSs) and enhancers in the descending colon of 94 IBD patients and controls. IBD-upregulated promoters and enhancers are highly enriched for IBD-associated SNPs and are bound by the same transcription factors. IBD-specific TSSs are associated to genes with roles in both inflammatory cascades and gut epithelia while TSSs distinguishing UC and CD are associated to gut epithelia functions. We find that as few as 35 TSSs can distinguish active CD, UC, and controls with 85% accuracy in an independent cohort. Our data constitute a foundation for understanding the molecular pathology, gene regulation, and genetics of IBD.
Inflammatory bowel disease (IBD) is an umbrella term for a range of chronic idiopathic disorders, of which Crohn’s disease (CD) and ulcerative colitis (UC) constitute the two major entities, both with an increasing incidence and prevalence worldwide, with an estimated 2.5–3 × 10^9 patients in Europe alone. UC is characterized by mucosal inflammation of the colon, whereas CD may affect all layers of the intestine throughout the gastrointestinal tract (Fig. 1a). The distinction between CD and UC is critical for correct medication and especially surgery, yet the diagnosis is challenging. In a previous meta-analysis of 22,038 IBD patients, it was impossible to distinguish UC or CD in 13% of cases. This is a major problem for patients who have failed medical therapy and are facing colectomy. Genome-wide association studies (GWAS) have identified 200 loci containing IBD-associated variants, but IBD-associated single-nucleotide polymorphisms (SNPs) can only explain 15–20% of the disease phenotype. Moreover, ~70% of IBD-associated SNPs are non-coding and might affect gene regulation. However, a comprehensive map of active promoters and enhancers is lacking for IBD patients.

Genome-wide 5′-RNA sequencing of capped RNAs (Cap Analysis of Gene Expression, CAGE) can detect transcription start sites (TSSs) and thereby promoter regions. Distal enhancer regions can also be detected by CAGE, because active enhancers transcribe enhancer RNAs (eRNAs), which can serve as a powerful proxy for cell-specific enhancer activity and CAGE-identified enhancers are two to three times more likely to validate in vitro than non-transcribed enhancers detected by chromatin-based methods. An advantage of CAGE is that it can be easily applied on small biological samples, such as colonic biopsies that are routinely taken when diagnosing IBD.

Here we present CAGE analysis on biopsies from the descending colon from 94 IBD patients and controls. These data enabled annotation of IBD-regulated enhancers and TSSs, and characterization of IBD-associated SNPs in such regions. Furthermore, we define a small subset of TSSs that allow for accurate classification between UC, CD, and control subjects.

Results

The TSS expression landscape of IBD. We recruited 94 subjects undergoing lower endoscopy as part of routine visits, diagnosed as UC, CD, or control based on ref. UC patients were graded by the Mayo score: a score ≤2 with endoscopic sub-score of 0 (no macroscopic inflammation) as quiescent UC and >2 as active UC. CD patients were graded by the Harvey–Bradshaw score: a score <5 as quiescent CD and ≥5 as active CD. For controls, an endoscopy was performed due to gastrointestinal symptoms but all clinical investigations returned normal. We extracted RNA from pinch biopsies from the descending colon of 94 subjects (cohort 1): 25 active UC (UCa), 20 active CD (CDa), 17 UC patients in remission (UCi), 3 CD patients in remission (CDi), and 29 control subjects (Ctrl) (Fig. 1a, Supplementary Table 1 and Supplementary Data 1). For UCa and CDa, biopsies taken from visually inamed intestine, together with endoscopic findings, medical history, laboratory, and imaging procedures. The choice of focusing on macroscopically inamed rather than not visibly inamed tissue was based on practical and statistical considerations: (i) in clinical diagnosis of IBD, histological examination is made on biopsies obtained from grossly inamed intestine, together with endoscopic findings, medical history, laboratory, and imaging procedures. (ii) We wanted to characterize the most affected colonic regions of the disease to maximize comparability between biopsies, since non-macroscopically inamed tissue might still show inflammation at the molecular level.

For each subject, we prepared a CAGE library (Supplementary Data 2). We defined 48,593 expressed TSSs based on CAGE tag clusters (Supplementary Data 3). Most CAGE-defined TSSs were within gene loci: 22.6% (11,013) corresponded to annotated main TSSs from GENCODE models, 12.8% (6229) to annotated alternative TSSs and 40.7% (19,787) TSSs were putative novel alternative TSSs within known gene loci, although the majority of these were lowly expressed (Fig. 1b). These may reflect spurious transcription initiation, TSSs expressed in rare cells or noise, but were not classified as bidirectional transcribed enhancers in our analysis (see below). The ST6GAL1 gene, exemplifies the common occurrence of known and novel alternative TSSs in the same gene. The annotated main ST6GAL1 TSS was detected but did not change between groups, while one novel alternative TSS was upregulated in IBD, and another was downregulated (Fig. 1c).

CAGE TSSs principal component analysis (PCA) showed a separation between active IBD (UCa, CDa) and other groups (UCi, CDi, Ctrl), and a weaker separation between CDa and UCa (Fig. 2a). Surprisingly, UCI and CDi were not readily distinguishable from Ctrl (Supplementary Note 1). Hence, we excluded UCi and CDi from the systematic analysis below.

In order to identify differentially expressed TSSs, we used the generalized linear model framework in edgeR. As observed above, CDa and UCa samples were characterized by a shared response compared to Ctrl (PC1 in Fig. 2a.), and secondly by differences between CDa and UCa (PC2 in Fig. 2a). To capture this, we defined sets of significantly up- or downregulated TSSs identified in both CDa and UCa vs. Ctrl (IBDup and IBDDown). To identify TSSs distinguishing CDa and UCa, we identified TSSs significantly upregulated in CDa vs. UCa, defined as CDspec, and TSSs significantly upregulated in UCa vs. CDa, defined as UCspec. The differential expression analysis recapitulated the PCA results: the number of TSSs within IBDup (4376) and IBDDown (2536) was much larger than in CDspec (337) and UCspec (71) (Fig. 2b, Supplementary Data 4). The inclusion of additional patient data in the analysis, i.e. gender and previous medication, did not affect the number of differentially expressed TSSs substantially, indicating these effects are small compared to the CDa/UCa/Ctrl diagnosis (Supplementary Figure 2a). We also identified genes where one or more TSSs responded differently compared to the other TSSs inside the same gene (as exemplified in Fig. 1c): 2068 genes showed this pattern in IBDup/IBDDown and 82 in CDspec/UCspec (Supplementary Data 5).

Because most functional annotations are on gene rather than TSS level, we defined differentially expressed genes by summing the contribution of each TSS within each GENCODE gene model and repeating the differential expression analysis above (Supplementary Data 6, Supplementary Fig. 2b). Gene Ontology (GO) analysis (Fig. 2c, Supplementary Data 7) of IBDup genes showed a strong overrepresentation of GO terms related to inflammatory response and cytokines. IBDDown genes were also enriched for colon-specific processes previously related to IBD pathogenesis, for example remodeling of the extracellular matrix (FDR = 2.66e−09) and antibacterial peptide secretion (FDR = 1.02e−14). Because small networks of biologically linked genes are challenging to identify through GO analysis, we supplemented this analysis with STRING network analysis. This identified smaller sets of upregulated genes with known functions in gut epithelia barrier integrity, including gap junctions (connexins AQP5, GJA1, and TIGHT tight junctions (claudins CLDN1, 2, 10, 14, and 18) (Supplementary Fig. 2c). Interestingly, the full set of CLDN genes could distinguish IBD from Ctrl subjects, because a subset was part of the IBDDown set (Supplementary Fig. 2d–e). More generally, the IBDDown set was enriched for terms related to xenobiotic response and drug/steroid processing (Fig. 2c): STRING analysis showed that proteins corresponding to IBDDown genes were involved in cell cycle and growth, solute and membrane transport and maintenance of fluid balance in the

ARTICLE
Fig. 1 Defining the TSS landscape of IBD. a Overview of data set. Pinch biopsies from the descending colon were taken from 94 human subjects, classified into active ulcerative colitis (UCa), active Crohn’s disease (CDa), UC and CD patients in remission (UCi, CDi) and controls (Ctrl: subjects screened for IBD where all subsequent investigations turned out normal). For each biopsy, a CAGE library was produced, resulting in the detection of TSSs and enhancer regions. Schematics show the typical inflammatory patterns in the intestinal system, the approximate location of biopsy sampling and number of subjects in each group. b Detection and annotation of gene TSSs. Top panel shows an example gene with CAGE-defined TSSs, which are annotated as main, alternative or novel TSSs defined by their overlap with GENCODE gene annotation as indicated in callouts. CAGE-defined TSSs not falling into any of the categories were defined as novel intergenic TSSs. Left bottom panel shows the number of detected TSSs in each category (colors correspond to callouts in top panel), split by CAGE expression strength measured as tags per million (TPM). Right bottom panel shows the expression distribution of each category of TSSs as boxplots. c Genome-browser example of the detection of annotated and novel TSSs in the ST6GAL1 gene. From top to bottom, the browser plot shows the genomic location investigated, RefSeq gene annotation (exons are denoted as boxes, green indicate forward strand transcription). Below, CAGE TPM expression on the forward strand is shown as average across subjects (green bars) and for individuals (pink heat map, each row is one subject, columns are widened 5× for readability), split by subject group. Annotated and novel TSSs, annotated as in b are highlighted. Note that the first novel alternative TSS is upregulated in CDa and UCa vs. remaining groups, while the last novel alternative TSS has the opposite pattern (block arrows indicate TSSs and their overall strength in each subject group for these two TSSs). Conversely, the annotated TSSs are detected but not substantially changing between groups.
were overrepresented, including several terms linked to gap genes involved in steroid hormone biosynthesis.

The CDspec set was enriched for terms related to steroid, lipid, and lipoprotein metabolism (Fig. 2c). Because of the limited number of genes in the UCspec set, only a handful of GO terms and lipoprotein metabolism (Fig. 2c). Because of the limited number of genes in the UCspec set, only a handful of GO terms were overrepresented, including several terms linked to gap genes involved in steroid hormone biosynthesis.

The CDspec set was enriched for terms related to steroid, lipid, and lipoprotein metabolism (Fig. 2c). Because of the limited number of genes in the UCspec set, only a handful of GO terms were overrepresented, including several terms linked to gap genes involved in steroid hormone biosynthesis.

The CDspec set was enriched for terms related to steroid, lipid, and lipoprotein metabolism (Fig. 2c). Because of the limited number of genes in the UCspec set, only a handful of GO terms were overrepresented, including several terms linked to gap genes involved in steroid hormone biosynthesis.

The CDspec set was enriched for terms related to steroid, lipid, and lipoprotein metabolism (Fig. 2c). Because of the limited number of genes in the UCspec set, only a handful of GO terms were overrepresented, including several terms linked to gap genes involved in steroid hormone biosynthesis.

The CDspec set was enriched for terms related to steroid, lipid, and lipoprotein metabolism (Fig. 2c). Because of the limited number of genes in the UCspec set, only a handful of GO terms were overrepresented, including several terms linked to gap genes involved in steroid hormone biosynthesis.
immune response but rather to cellular functions associated to gut and gut epithelia.

Differential expression analysis will favor genes showing low variance within groups. However, gene expression variance across patients with the same diagnosis is relevant for patient stratification and precision medicine. We found that five antibacterial peptide genes, defenses DEFA5 and DEFA6 (normally expressed in small intestine) and Paneth cells) and -lectins REG1A, REGIB, and REG3A (normally expressed in pancreas and small intestine) were highly upregulated in IBD and at the same time showed extreme variance across UC and CD subjects (Fig. 2d). The upregulation of these genes was highly correlated to cytokine induction (Supplementary Fig. 2h). The large variance might indicate patient-specific responses to inflammatory factors, disease chronicity or cell metaplasia, and again highlights the role of epithelia-specific genes IBD response.

Colonic biopsies consist of multiple cell types, whose composition may change in IBD. We assessed this in two ways. First, we took advantage of the FANTOM5 TSS atlas, where individual TSSs were annotated as being preferentially expressed in one or more cell types sampled across the human body based on CAGE expression. With these data, we could estimate overall cell type enrichments for each differentially expressed TSS group across all FANTOM5 primary cell types (Fig. 2e, Supplementary Data 8). IBDup TSSs were enriched in immune-related cells, while IBDdown TSSs were enriched in epithelial cells. Cell-type enrichment patterns of CDspec and UCspec TSSs were different: CDspec TSSs were mostly enriched for immune-related cells (including basophils, monocytes, and eosinophils) and intestinal epithelial cells, while the UCspec TSSs were mostly enriched in epithelial cells and mesenchymal cells. Although T-helper cells have previously suggested to define the difference between CD and UC (reviewed in ref. 22), they were not enriched in our analysis, consistent with previous results.

Second, because FANTOM5 data only included cells from healthy tissue, we wanted to also assess whether induction of an inflammatory response induced IBD signature genes in immune cells and/or epithelial cells. To address this, we used primary cultures of colonic epithelia organoids and monocytes, which were stimulated with TNF (also known as TNFα), one of the most prominent inflammatory molecules associated with flaring disease in IBD patients. Cells were stimulated with TNF for 4 and 24 h (Fig. 2f, Supplementary Fig. 3a, Supplementary Data 9) and the expression of 35 TSSs (established in the classification section below) was measured by qPCR. The same TSSs were measured by qPCR in gut biopsies from an independent cohort with 18 CDa, 37 UCa and 46 Ctrl subjects (cohort 2). We found that out of a total of 21 TSSs that were upregulated in UCa or CDa vs. control, 66% (14/21) and 81% (17/21) were also upregulated in TNF-stimulated organoids and monocytes, respectively, at any time point; 47% (10) of TSS were upregulated in both stimulated organoids and monocytes (Fig. 2f and Supplementary Fig. 3b, c). It is thus unlikely that the IBD expression change is solely attributed to immune cells; epithelial cells are likely part of shaping the transcriptional changes associated with UC and CD.

Thus, in agreement with the GO analysis, these cell type enrichment results indicated that the difference between Ctrl, CDa, and UCa does not only lie in immune cells and their associated general immune response pathways, but also in cells and genes associated with gut epithelia.

The enhancer landscape of inflammatory bowel disease. Gene and TSS-focused analysis as above can give insights into gene expression but not their regulation by distal enhancers. As established previously, bidirectional CAGE peaks accurately predict enhancer locations and activity. Using the same method as in ref. 13, we predicted a permissive set of 37,231 enhancers, and a strict subset of 10,670 enhancers where ≥8 samples had detectable enhancer expression (the latter set was used in the rest of the analyses; Supplementary Data 10, 11 and Supplementary Fig. 4a). The strict enhancer set overlapped ENCODE DNase hypersensitive sites (DHSs) in 90% of cases (P < 2e−16, by sampling), and these enhancers were significantly more conserved across mammals than non-transcribed DHSs from gut tissue, and randomly selected genomic regions (P < 5.2e−4, two-sided Mann–Whitney U test; Fig. 3a). These enhancers were also strongly enriched for ENCODE transcription factor (TF) ChIP-seq peaks from diverse cells (Fig. 3b). Similarly, they were highly enriched for H3K27ac and H3K4me1 ChIP-seq signals from rectal and colonic mucosa, and to a lesser degree other intestinal regions. The strict enhancer set overlapped ENCODE DNase hypersensitive sites (DHSs) in 90% of cases (P < 2e−16, by sampling), and these enhancers were significantly more conserved across mammals than non-transcribed DHSs from gut tissue, and randomly selected genomic regions (P < 5.2e−4, two-sided Mann–Whitney U test; Fig. 3a). These enhancers were also strongly enriched for ENCODE transcription factor (TF) ChIP-seq peaks from diverse cells (Fig. 3b). Similarly, they were highly enriched for H3K27ac and H3K4me1 ChIP-seq enrichment in immune cells and non-gut tissues (Fig. 3c and Supplementary Fig. 4b). Thus, the enhancer candidates had the hallmarks of enhancer regions in general, but seemed most strongly used in gut tissue.

PCA of enhancer expression showed separation between inflamed samples (UCa and CDa) and Ctrl, but only minor separation between UCa and CDa (Fig. 3d). We used EBESeq to...
define four differentially expressed enhancer groups, analogous to the TSS groups defined above: shared CDa and UCa up/downregulated vs. Ctrl (IBD_{up} and IBD_{down}), upregulated in CDa vs. UCa (CDspec) and vice versa (UCspec) (Supplementary Data 12 and Supplementary Fig. 3d). In agreement with the PCA, the IBD_{up} and IBD_{down} enhancer sets were much larger than CDspec and UCspec sets (Fig. 3e).

Next, we used HOMER³¹ to identify shared predicted TF binding sites around IBD_{up} and IBD_{down} enhancers (±300 bp around enhancer midpoints; CDspec and UCspec sets were too small for meaningful analysis). The same analysis was used for promoter regions of corresponding TSS groups (defined as −500/+100 bp around TSSs) (Fig. 3f). IBD_{up} promoters and IBD_{up} enhancers were enriched for sites linked to TFs previously associated with inflammation, including ETS1, IRF1, STAT4, and RELA. IBD_{down} promoters and enhancers site enrichments were also highly similar: in particular, HNF4A and CDX2 sites were over-represented, consistent with their important roles in...
differentiation of gut epithelial cells. Decreased CDX2 and HNF4A expression were previously observed in IBD and indeed, site enrichments generally correlated with the expression of the associated TF (Fig. 3f). We observed similar enrichment patterns when analyzing enhancer and promoter regions for overlapping ENCODE TF ChIP-seq peaks (Supplementary Fig. 5).

Thus, IBD-induced enhancers and promoters share similar TF binding pattern enrichments, which are distinct from those of IBD-repressed enhancers and promoters.

To understand enhancer regulation, enhancers must be linked to target gene TSSs. As shown previously, enhancer-TSS pairs can be predicted based on CAGE co-expression across samples. Following the same approach, we identified 21,502 enhancer-TSS pairs within 500 kb with positive and significant Pearson correlation (correlation test, FDR < 0.05) (Supplementary Data 13). Of these pairs, 8507 (39.6%) were between a differentially expressed TSS and an enhancer, regardless of its differential expression status. Around half of IBD_up and IBD_down TSSs (54.7% and 47.9%, respectively) were linked with at least one enhancer, compared to smaller fractions for CDspec, UCspec (40.9% and 18.3%) and remaining TSSs (Fig. 3g). Enhancer-linked TSSs in IBD_up and IBD_down groups were commonly linked with more than one enhancer; in particular, IBD_up TSSs linked to >3 enhancers were as frequently observed as TSSs linked to a single enhancer (Fig. 3g).

The NOD2 locus, a cluster of chemokine genes (CXCL1-3, CXCL5-6, and CXCL8), and two receptors for these chemokines (CXCR1 and CXCR2), represent examples of enhancers linked with neighboring TSSs of genes associated with IBD pathogenesis (Fig. 4a–c). The examples show putative distal regulators for key IBD genes, and highlighted a potential regulatory SNP that may affect the chemokine response pathway. Due to the common occurrence of enhancers linked to cytokine-related genes, we annotated the cytokine–cytokine receptor interaction pathway with linked enhancers and alternative TSSs (Supplementary Fig. 6).

Characterization of IBD-upregulated enhancer clusters. Previously, large regions having enhancer-like chromatin features—so-called “super”—or “stretch”—enhancers—were identified as drivers of central biological processes. By eye, clusters of CAGE-defined enhancers were evident, for instance in the region surrounding CEBPB, a key inflammatory response TF (Fig. 5a). We defined CAGE-based enhancer clusters by requiring >2 consecutive enhancer midpoints spaced ≤15 kb from each other, resulting in a set of 693 enhancer clusters (Supplementary Data 14), where 67% overlapped enhancer clusters defined by ChIP-seq in immune and gut cells. CAGE-defined enhancer regions within clusters often co-occurred with ENCODE TF ChIP-seq peaks (Fig. 5a).

The number of CAGE-defined enhancers within a cluster correlated with the average fraction of IBD_up but not IBD_down enhancers in the same cluster (Fig. 5b). The same trend was observed for predicted enhancer targets: TSSs linked to at least one enhancer within a cluster had a higher IBD vs. Ctrl fold change if the enhancer cluster contained >6 enhancers compared to TSSs linked to clusters with fewer enhancers (P < 2.2e−16, two-sided t-test) (Fig. 5c and Supplementary Fig. 7a). Consistent with these observations, if an IBD_up TSS was linked to an enhancer in a cluster with >6 enhancers, it was typically linked with all or most enhancers within the cluster (Supplementary Fig. 7b). Altogether, this suggests that enhancer clusters with many members and singleton enhancers have distinct functions in IBD.

To further explore the relation between the number of enhancers within a cluster and their regulatory function in IBD, we compared (i) IBD_up TSS-linked enhancers from enhancer clusters with >6 members with (ii) IBD_down TSS-linked singleton enhancers (not belonging to any cluster). Singleton enhancers had a greater overlap with ENCODE ChIP-seq peaks corresponding to TFs associated with inflammation (including RELA, SP1, STAT factors, and IRF1) (Fig. 5d), while enhancer clusters were overrepresented for ChIP-seq peaks for chromatin remodelers and insulators, including SMARCA4 and CTCF. As SMARCA4 has a function in activation of repressed genomic regions and CTCF is an insulator, these larger enhancer clusters might reflect large-scale changes in chromatin structure induced by the inflammatory response, while smaller enhancer clusters may be driven by the binding of one or a few TFs.

SNP overrepresentation in enhancers and promoters. As discussed above, a majority of IBD-associated SNPs are located in intergenic regions, and may impact gene regulation. The UC-associated SNP overlapping an IBD_up enhancer located between cytokine receptors CXCR1 and CXCR2 (Fig. 4c) exemplifies an SNP with potential regulatory function. As we did not have access to the genotypes of our subjects, we investigated the overlap between publically available IBD-associated SNPs and enhancer and promoter regions using two complementary approaches; GWAS SNP enrichment and partitioned heritability of IBD.

First, we obtained all SNPs significantly associated with a disease/trait from the GWAS catalog. For each GWAS SNP, we merged the region covered by other SNPs in linkage disequilibrium (LD, R^2 > 0.75 and within 500 kb) into a single block, using...
the 1000 genomes CEU reference population. If LD blocks overlapped, they were merged into an LD clump.

For every GWAS disease, we assessed the overlap between LD clumps with our identified promoter (−500/+100 bp around TSS peaks) and enhancer regions (±300 bp around enhancer midpoints) by using empirical Bayes to shrink fraction of overlapping LD clumps toward the average of all GWAS diseases. Only IBD, CD and UC LD clumps had a high degree of overlap with both the promoter and enhancer sets (Fig. 6a and Supplementary Fig. 8a). Next, we analyzed whether differentially expressed TSSs and enhancers were enriched for LD clump overlaps. IBD up promoters and enhancers were enriched for LD clumps associated with several immune-related diseases, but only IBD, CD, and UC LD clumps were enriched in both promoters and enhancers.
Enhancers, but not promoters, were highly enriched for other inflammatory intestinal disease LD clumps. Conversely, IBD$_{\text{down}}$ TSSs and enhancers were not enriched for LD clumps associated with IBD, UC, or CD, but showed modest enrichment for LD clumps associated with heart disease (Fig. 6c).

The above analysis only assessed enrichments of genetic variants reaching genome-wide significance. However, many genetic variants might collectively make important contributions to IBD pathogenesis without individually reaching genome-wide significance. To this end, we performed partitioning of heritability using the stratified LD-score regression method to investigate if TSSs and enhancers were enriched for SNPs explaining the heritability of IBD. Briefly, this method measures SNP heritability enrichment in a set of genomic regions (e.g. enhancers) as the proportion of SNP heritability ($Pr(h^2)$) divided by the proportion of SNPs ($Pr(SNP)$) in the same regions, based on GWAS summary statistics. Previously, this method was employed on 24 classes of annotated functional regions and GWAS summary statistics from 17 complex diseases, to establish a "baseline model" describing the contribution of each annotation class. To extend this analysis with our enhancer and TSS sets in an IBD setting, we obtained GWAS summary statistics for ~12 million SNPs from the International IBD Genetics Consortium. We then analyzed the partitioned heritability of IBD in the 24 annotated functional regions from but added our enhancer (~300 bp around enhancer midpoints) and promoter (~500/+100 bp around TSS peaks) regions, and the subsets of these belonging to the IBD$_{\text{up}}$ or IBD$_{\text{down}}$ groups, to the original model. We found that our enhancers and promoter sets were significantly enriched for IBD SNP heritability. This was even more evident in the IBD$_{\text{up}}$ enhancers and promoters, while IBD$_{\text{down}}$ was not significantly enriched (Fig. 6d, Supplementary Fig. 8b, c). The combined IBD$_{\text{up}}$ enhancer and promoter set had the highest heritability enrichment of all regions included in the baseline model, including FANTOM5 enhancers. Overall, IBD heritability enrichment was considerably higher for annotation classes corresponding to regulatory regions (enhancers, promoters etc.) than coding exons.

Overall, these results suggest that there is an association between IBD-associated SNPs and the regulatory regions we define. While the genotypes of the samples investigated here would be necessary to establish the causal effect of individual SNPs, our analysis indicate that the enhancer and promoter resources we provide are useful starting points for future investigations of non-coding IBD-associated SNPs, since they allow for a more detailed interpretation of otherwise characterized intergenic regions.

Classification of UC, CD, and controls from TSS expression.

The statistical analyses above could identify TSSs and enhancers that were up- or downregulated between subject groups, but cannot assess whether expression data for a single biopsy contain enough information to accurately classify the subject as active UC, active CD, or control. This is a relevant question as the diagnosis between active UC and CD is often clinically difficult, and expression data might be useful to increase overall diagnosis accuracy. We reasoned that CAGE-based analysis is not realistic in a clinical setting; instead, we sought to define a small set of CAGE-based biomarkers for active UC, active CD and controls that were amendable to robust targeted methods such as qPCR.

To achieve this, we used successive steps of biomarker selection and testing (Fig. 7a). First, we analyzed the CAGE data from the 25 UCa, 20 CDa, and 29 Ctrl subjects in cohort 1 with an ensemble of statistical and manual curation methods to extract 274 TSSs/enhancers distinguishing UCa, CDa, and Ctrl groups (Supplementary Data 15). A Random Forrest (RF) classification framework trained on CAGE data for these 274 biomarkers could predict UCa, CDa, and Ctrl diagnosis with an overall accuracy of 95%, assessed by five-fold cross-validation (Fig. 7b, left and middle panels). This high accuracy could be retained when reducing the number of biomarkers (Fig. 7b, right panel). We were able to design and validate qPCR primers corresponding to 161 of these biomarkers (Supplementary Data 15, 16), and analyzed their expression using microfluidic qPCR on the same biopsies as above (cohort 1: 161 primer pairs analyzed in biopsies from 74 subjects) (Supplementary Data 17). An RF trained on the microfluidic qPCR expression data gave an overall accuracy of 84% assessed by five-fold cross-validation (Fig. 7c, left and middle panels). Thus, accurate classification of IBD based on these biomarkers was achievable across experimental methods. Similar accuracy levels were achieved using fewer biomarkers: we retained comparable accuracy using 30–40 biomarkers (Fig. 7c, right panel). Encouraged by this, we reduced the number of biomarkers to a final set of 35. In this final selection no enhancers were retained, consistent with their lower RNA abundance compared to gene TSS.

To test whether the classification power of our biomarkers generalized beyond cohort 1, we enrolled a second independent validation cohort (cohort 2: 18 CDa, 46 Ctrl, 37 UCa; Supplementary Table 1), which included biopsies acquired at two different hospitals by different physicians, and measured the expression of some 35 biomarkers using microfluidic qPCR (Supplementary Data 18). We then trained a RF on microfluidic qPCR data from the 35 biomarkers from cohort 1 and predicted the diagnosis of the subjects in cohort 2. We achieved an overall accuracy of 85% in cohort 2 (Fig. 7d, left and middle panels), strongly suggesting that our selected biomarkers generalize to the larger population. Although the CD sensitivity was lower when using qPCR than with CAGE (see Discussion), our results were in all cases substantially better than expected by chance, as estimated by training on randomly shuffled cohort 1 labels and then...
Fig. 5 Characterization of enhancer clusters in IBD. a Example of an enhancer cluster in the CEBPB locus. Genome browser screenshot of the CEBPB locus, organized as in a but also showing chromatin-defined enhancer clusters from dbSUPER36, and a CAGE derived enhancer cluster located ~150 kb downstream of CEBPB. Because CEBPB has two nearby alternative TSSs with similar activity, most enhancers are linked to both. Lower panel shows a zoom-in of the enhancer cluster where ENCODE transcription factor ChIP-seq peaks are displayed: each black line corresponds to one ChIP-seq peak. b Relation between enhancer IBD-up/downregulation and number of enhancers within an enhancer cluster. Bar plot shows the fraction of enhancers that are significantly downregulated (IBD\textsubscript{down}, gray) or upregulated (IBD\textsubscript{up}, white) in UCa and CD\textsubscript{a} vs. Ctrl, grouped by the number of enhancers within an enhancer cluster. Enhancers not part of clusters are included for comparisons (singleton enhancers). The expected overlap by chance for each bar is indicated as dotted lines, with 95% confidence intervals. c Relation between the number of enhancers within an enhancer cluster and IBD upregulation of linked TSSs. Boxplots show the distribution of IBD vs. Ctrl log\textsubscript{2} fold changes of TSSs linked to singleton enhancers or enhancer clusters as in b. TSSs are grouped by how many enhancers the linked enhancer cluster contains. d Overrepresentation of ENCODE TF ChIP-seq peaks in singleton enhancers vs. enhancer clusters with >6 members linked to IBD-upregulated TSSs. X-axis shows the log\textsubscript{2} fold change in ENCODE ChIP-seq peak over-representation in single enhancers vs. enhancers within enhancer clusters having >6 enhancers, where 0 indicates no difference between sets. Only enhancers linked to IBD\textsubscript{up} TSSs are analyzed. Y-axis shows the associated over-representation P-value. Each dot corresponds to one type of ChIP-seq peak, colored by whether they are annotated as inflammation-associated factors (purple), SMARC- or CTCF factors (orange), or other factors (gray). Factors of interest are highlighted.
predicting the labels of cohort 2 (Fig. 7d, right panel and Supplementary Figure 9a, b). To explore whether CD sensitivity could be improved further, we employed the gradient boosting decision tree method implemented in XGBoost, training on the same 35 biomarkers cohort 1 and predicted the diagnosis of the patients in cohort 2. This resulted in an increase in CDa classification sensitivity by 13% points with no overall classification performance decrease (Supplementary Figure 9c). Thus, our initial results are not specific to machine learning method employed and may be improved by the use of more complex techniques. In summary, we have shown that a small set of qPCR primers, selected from CAGE data, could distinguish control, active UC, and active CD biopsies.

Discussion

Here we have profiled the enhancer and TSS landscape of biopsies taken in the descending colon of admitted IBD patients and controls. Such biopsies are identical to biopsies used in current
Fig. 7 Classification of UC, CD, and controls. a Overview of analyses. Starting from all TSSs and enhancers (referred to as biomarkers, \(N = 59,263 \)) in cohort 1, we performed an initial feature selection using an ensemble approach, resulting in 274 features. We designed successful qPCR primer pairs for 161 biomarkers and applied microfluidic qPCR analysis to the same samples. A secondary feature selection process was used to reduce the set of biomarkers to 35. We analyzed the expression of these biomarkers in an independent validation cohort (cohort 2) using microfluidic qPCR. Classification analysis was performed at each step (panels b–d). b Prediction of UC/CD/Control diagnosis labels based on CAGE expression. CAGE expression data from cohort 1 from 274 selected biomarkers were used to train and evaluate a Random Forest model based on five-fold cross-validation 1000 times. Left panel: average accuracy, sensitivity, and specificity are shown for each subject group as bar plots along with overall accuracy. Error bars show 95% confidence intervals across cross-validations. Dotted lines indicate 0.8 and 0.9. Middle panel: confusion matrix showing average fractions of predictions that fall into each of the actual subject groups (columns add to 100%). Right panel: average prediction accuracy (Y-axis) as a function of number of biomarkers used for training (X-axis). Shaded areas indicate 95% confidence intervals across cross-validations. c Prediction of UC/CD/Control diagnosis labels based on microfluidic qPCR expression. Plots are organized as in panel b, but based on microfluidic qPCR expression data from cohort 1 using 161 primers corresponding to selected biomarkers. d Validation using an independent cohort feature reduction based on the data in panel e resulted in the selection of 35 features. We trained a Random Forest model on microfluidic qPCR data from these biomarkers from cohort 1 and evaluated it on corresponding data from an independent cohort (cohort 2). Left and middle panels show classification results, as in panel b. Right panel shows a comparison between the confusion matrix (as in panel b) of our predictions and the confusion matrix obtained by repeating the analysis with randomly shuffled training labels. Numbers indicate the average fold changes of fractions (actual vs. shuffled).

diagnosis methods. This has the advantage that samples are highly clinically relevant, and that transcriptional changes in the disease states measured will be close to the in vivo reality. Thus, from a diagnostic perspective, such tissue samples are more relevant than selected primary cells isolated from tissue. As with all tissue samples, expression changes may be partially due to changes in cell composition. We showed that aside from a shared increase of immune cell-linked TSSs, active CD and UC seem to have different composition of cells, where UC-specific gene expression was more strongly linked to epithelial cells.

CAGE data interpreted on gene level identified similar pathway and GO term enrichments as previous RNA-Seq studies. A recent study identified two distinct CD populations based on RNA expression data: we could not replicate this finding but the CAGE data did show the active CD population to be much more transcriptionally diverse than active UC or controls, as discussed below.

This is a large-scale analysis of enhancer activities across a total of 94 CD, UC, and control subjects: ref. investigated two smaller CD populations (\(N = 10 \) and 9) using FAIRE-seq, a method identifying accessible DNA, while H3K27ac ChiP-seq has been performed in gut tissue for even fewer individuals, and not in an IBD context. With our data, we could establish that promoters and enhancers that are upregulated in IBD share the same DNA-binding patterns enrichments, and that enhancer clusters upregulated in IBD are distinct from corresponding singleton enhancers.

The enhancer component of IBD reported here gives new possibilities for understanding the disease and its genetics. We show a clear overrepresentation of IBD-associated SNPs in both IBD-upregulated enhancer and promoter regions, and these regions had the largest IBD heritability enrichment compared to a large set of other genomic regions. Thus, the IBD TSS and enhancer sets reported here are unique resources for interpretation of the functional impact of noncoding genetic variants.

Aside from adding to the functional and genetic understanding of IBD, CAGE data can be used to distinguish between active UC, CD, and control subjects. This accuracy could be retained using as few as 35 TSSs, quantified by microfluidic qPCR and validated in an independent cohort. Although the method is not at usable...
in clinical settings in its current form, it may provide an inroad to next-generation sequencing approaches. All individuals provided informed consent to participate in this study. In this context, participation meant that five extra biopsies were obtained in addition to the number of biopsies required on medical grounds, extending the examination time by 2–3 min.

CTRL subjects were a subset of the above set, but were assigned “CTRL” when all clinical and paraclinical investigations subsequently indicated no inflammation. Participants were informed both orally and in writing in compliance with the Declaration of Helsinki and the guidelines of the Danish National Scientific Ethics Committee. The gut epithelia organoid and monocyte studies were approved by the local bioethical committee (ethical approval numbers 1302159 and 51899, respectively). All samples were obtained from patients who provided informed consent before surgery (for gut organoids) or blood sampling (monocytes).

Tissue isolation and RNA extraction. Mucosal pinch biopsies (weight on average 15 mg) were obtained from the descending colon using endoscopic forceps. We choose the descending colon in order to avoid intersegmental variation. The endoscopic diagnosis of active or inactive disease was confirmed by histopathology conducted on parallel biopsies taken within an inch of the 1st biopsy. The biopsies were immediately placed in RNAlater* Stabilization Solution (Ambion*, Life Technologies) and kept at 4 °C for 24 h before long-term storage at −80 °C. The RNA was extracted using PureLink® RNA Mini Kit (Ambion*, Life Technologies) according to the manufacturer’s instructions. The extracted RNA was homogenized directly in the lysis buffer using an ULTRA-TURRAX® (IKA Works, Inc). The purification was performed following the manufacturer’s instructions including an on-column DNase treatment with the PureLink® DNase Set (Ambion, Life Technologies). RNA integrity was determined using the Agilent 2100 Bioanalyzer (Agilent Technologies). The average RNA integrity number (RIN) was 7.6 and no samples were below 5.3. For cohort 2, the average RIN value was 8.0 and no samples were below 6.2.

Monocyte isolation and stimulation. Blood was freshly collected from IBD patients with informed written consent. First, freshly drawn blood was diluted at a ratio of 1:1 with PBS. Peripheral blood mononuclear cells (PBMCs) were isolated from diluted blood by Ficoll-Paque density gradient centrifugation according to the manufacturer’s instructions (GE Healthcare, Upsala, Sweden). Harvested PBMCs were used for monocytes isolation. CD14+ monocytes were isolated from PBMCs by negative immunomagnetic bead separation using Monocytes Isolation Kit II (Miltenyi Biotec, CA, USA). After monocyte isolation, 1 × 10^6 monocytes were plated in each well of 24-well plates (TPP, Trasadingen, Switzerland) in 1 ml RPMI-1640 culture medium containing 1% fetal bovine (f.b.) serum, 50 μg/ml penicillin, 50 μg/ml streptomycin, and 0.5 mg/ml gentamycin) at 37 °C in a cell culture incubator. Cells were cultured overnight and stimulated with 10 ng/ml TNFα the next day and harvested at indicated time. Control cells were not treated with TNFα but otherwise treated in the same way. Cells were pelleted, snap frozen on dry ice and stored at −80 °C until use. RNA was purified using Qiagen RNeasy® Mini Kit (Qiagen, Germany). The purity was measured as the A260/280 ratio and was between 1.9 and 2.1. RNA quality (integrity) was determined using the 2100 Bioanalyzer Instrument (Agilent Technologies). The Agilent RNA 6000 Pico Kit (Agilent Technologies) and Agilent 2100 bioanalyzer. The average RNA integrity number (RIN) was 7.6 and no samples were below 5.3. For cohort 2, the average RIN value was 8.0 and no samples were below 6.2.

Epithelial organoid growth and stimulation. Biopsies of morphologically normal epithelium from patients undergoing surgery for colorectal cancer were aseptically collected. After washing thoroughly with PBS, biopsies were cut into ca. 4 mm pieces and incubated in freshly prepared chelation buffer (96 mM NaCl, 55 mM Tris-acetate, 44 mM sucrose, 10 mM EDTA, 8 mM KH·PO₄, 5.6 mM Na·HPO₄, 1.6 mM KCl, 0.5 mM DTT) for 45 min with agitation on ice. After replacing chelation buffer with diluted 3× growth medium containing 1% human serum, filtered in sterile filters. Filtered crypts were suspended in ice cold Matrigel, plated in 48-well plates and maintained in organoid culture medium: Advanced DMEM/F12 (Life Technologies), 1X penicillin/streptomycin (Life Technologies), 10 mM HEPES (Life Technologies), 2 mM GlutaMAX (Life Technologies), 10 mM Nicotamide (Sigma), 1X 2’L (Life Technologies), 1X B2’ (Life Technologies), 1X N-acetylcysteine (Sigma), 10 μM Y-27632, 0.5 μM A-83-01 (Tocris), 10 μM SB202190 (Sigma), 100 ng/ml mWnt3a (Cell Guidance Systems), 500 ng/ml mRspo1-1 (R&D systems), 100 μg/ml mNoggin (R&D systems), 50 ng/ml heGFl (Peprotech), 2.5 μM PGE2 (Sigma). For TNFα stimulation experiments, primary organoid lines from different patients (passage number < 3) were run in technical triplicates and maintained in organoid culture medium supplemented with 10 nM hTNFα (R&D systems) for 0, 4, or 24 h in duplicate wells. Duplicate wells were pooled together and RNA was
isolated using Trizol (Invitrogen) in combination with Purelink minicolumns (Life Technologies). The Purelink minikit was used as recommended by the manufacturer including the on-column DNase step. The average yield was 5540 ng with a RIN between 6.8 and 9.8. TSS expression analysis of 36 TSS targets (as defined below) was done using the microfluidics Fluidigm platform in parallel with biopsy qPCR, as described below.

CAGE library preparation, sequencing, mapping, and processing. CAGE libraries were prepared according to ref. 7, with an input of 1500 ng of total RNA as starting material; libraries were prepared for each condition using the Fluidigm Fluidigm platform in parallel with biopsy qPCR, as described below.

The following four barcodes were used: no. 2 (CTT), no. 3 (GAT), no. 6 (ACG), and no. 8 (ATC). All used primers and adaptors were purchased from Integrated DNA technologies (IDT). A HiSeq2000 instrument from Illumina at the National High-throughput DNA sequencing Centre, University of Copenhagen was used; 30% PhiX spike-ins were added to each sample. CAGE reads were matched to their originating samples if barcodes matched identically. Linker sequences were removed and reads were filtered, requiring at least 50 in 30% of the bases using the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) with the length of 25 bp. CAGE tags were mapped using Bowtie (version 0.12.7) to the hg19 assembly using v = 2 and standard setting but allowing for multiple alignments. Subsequently, only uniquely mapping reads were retained. Reads that mapped to chrM were discarded. Supplementary Data 2 shows mapping statistics. In short, for each library on average 17.3 million reads mapped, of these, on average 74% (S.D. ± 2.8) mapped to a unique location.

To provide a genome-wide map of transcription start sites, 5' ends of the CAGE tags (CTSSs) that mapped close to each other on the same strand were grouped into tag clusters (TCs) which were used for all the post analysis as in ref. 10. In brief: for initial cluster definition, for each library, CTSSs supported only by one CAGE tag 5' end were ignored. After Tags Per Million (TPM) normalization (CAGE tags per total mapped tags in library [17]), remaining CTSSs from all libraries were summed into a joint CAGE profile. CTSSs within 20 bp of each other on the same strand were merged into TCs. We trimmed weakly TC expressed tails around TCs using a queue-based trimming algorithm: base pairs were removed iteratively from the edge of TCs, always choosing the most lowly expressed edge, until 10% of the TC had been removed. Trimmed TCs were then quantified in all samples by counting the total number of CAGE tags in each TC and each sample (for this step, singleton CTSSs were included). Unless otherwise mentioned, only TGs having ±1 TPM in at least three libraries were retained for further analysis. For simplicity, we refer to TCs as "CAGE-defined TCs." A summary of the number of unique TGs identified in each TC was defined as the single base-pair position within the TC with the highest total TPM coverage across all samples.

Annotation of CAGE-defined TSSs and gene-level expression. CAGE-defined TSSs were annotated using GENCODE v19 annotation [17]. Canonical TSSs were defined as the most upstream annotated TSS in the GENCODE gene model. CAGE-defined TSSs within ±100 bp of the most upstream annotated TSS for a CAGE-annotated gene were thus labeled as canonical TSSs. CAGE-defined TSSs within ±1000 bp from an other GENCODE-annotated TSS were defined as "known alternative TSS." CAGE-defined TSSs within gene bodies more than 100 bp from an annotated gene were defined as novel antisense TSSs. Some analyses were performed at the level of annotated genes, rather than on CAGE-defined TSS level. For these analyses, based GENCODE v19 annotation [17], we summed up all CAGE-defined TSSs overlapping the gene on the same strand, including intrinsic TSSs. In case of a TSS overlapping different genes (not different transcripts of the same gene), we used an GENCODE-annotated TSS were annotated as TSS ±100 bp from all other GENCODE-annotated TSS were de

Enhancer identification. Enhancer regions were identified from CAGE-derived bidirectionally transcribed loci, as in ref. 19 with the following modifications: only enhancer regions candidates whose bidirectionality score [19] < 0.6 (D ranges from −1 to 1 where 1 corresponds to a perfectly balanced transcription between strands around the enhancer midpoint, as defined in ref. 19) were used. The permissive set was defined by requiring at least two CAGE tags in at least one sample within the enhancer region (as in ref. 19). While the strict set was defined by regions having at least eight CAGE tags in total within an ±2000 kb region. 43 technical replicates libraries were included at this stage, but discarded in final expression measurement table. Overlay with FANTOM5 enhancers (http://fantom.gsc.riken.jp/5/datasets/latest extra/Enhancers/ was calculated using the intersect command from BEDTools package [19].

Evolutionary conservation analysis of enhancer regions. Enhancer regions from the strict set were aligned by their midpoint. Enhancers whose ±2000 bp flanks from high-throughput sequencing were the empirical annotations, were discarded. As described in the main text, only TFs, CDa, UCa, and Ctrl samples were included in this analysis. The four major batches were included as blocking factors (Supplementary Data 1). The following descriptors were included as blocking factors (Supplementary Data 1). The following descriptors were included as blocking factors (Supplementary Data 1).
contrasts were used: (i) IBD: average of CDa and UCa different from Ctrl and (ii) CDvsUC: CD different from UC. Resulting P-values were corrected for multiple testing by controlling the familywise error rate (FDR) values. To obtain the final sets of differentially expressed TSSs (or genes) used in the main text, we filtered TSSs (or genes) with log2 fold change >1 and FDR <0.05. The $\text{IBD}_{\text{up}}/\text{IBD}_{\text{down}}$ sets correspond to TSSs (or genes) with a positive/negative log2 fold change in contrast i) and the CD$_{\text{spec}}$/UC$_{\text{spec}}$ sets correspond to TSSs (or genes) with a positive/negative log2 fold change in contrast ii), where a positive log2 fold change was used as an inclusion criterion for high expression in CDa compared to UCa (and vice versa). The fdpSIC/DGEx test function was used to identify differential TSS usage within annotated genes. The Simes method was used to aggregate TSS P-values to gene level. To decide whether including additional covariates would improve modeling of the data, we added effects of various medical labels, such as medication, smoking, gender, etc. to the design matrix described above, and used limma-voom to test for differential expression in a similar manner (due to the higher speed of limma compared to edgeR). Most extra covariates did not have any significantly differentially expressed genes, except minor effects for gender and SASA treatment. Since these were far smaller than the effects of either inflammation or batch, we chose not to include them in the main analysis shown in the main text (Supplementary Fig. 2a).

Differential expression analysis of enhancer regions. Because edgeR analysis has limited power for globally lowly expressed entities like enhancer RNAs, we used an alternative approach to assess differential expression between conditions for these data. The enhancer RNA data were normalized using the median-based method implemented in the DESeq2 package (default) [35]. Instead of normalizing directly on the counts of enhancer RNA, we used the counts from TSSs from the same samples. These signals are typically orders of magnitude higher and the measured counts are therefore associated with much smaller uncertainties. The R-package EBSeq (version 1.10.0) was used for the identification of differentially expressed enhancers based on the normalized data [36]. EBSeq assumes that any given data row (enhancer count data for CDa, UCa, and Ctrl samples, respectively) can follow one of a number of possible expression patterns, corresponding to different plausible hypotheses about that specific enhancer. For the three conditions considered here, there are a total of five possible patterns: Pattern 1: Enhancers expressed at the same level in CDa, UCa, and Ctrl (non-differential expression).

Pattern 2: Enhancers with the same expression level in CDa and UCa, and a different expression level in Ctrl (general IBD enhancers).

Pattern 3: Enhancers having similar expression levels in CDa and Ctrl, while being expressed differently in UCa (enrichers specific for UCa).

Pattern 4: Enhancers having similar expression levels in UCa and Ctrl, while being expressed differently in CDa (enrichers specific for CDa).

Pattern 5: Enhancers expressed differently in all three conditions.

For each enhancer in the dataset, EBSeq computes the posterior probabilities that it follows each of these five patterns. EBSeq also produces posterior estimates of the fold change in expression levels between each pair of the three conditions for any given enhancer. Another feature of the EBSeq method is that it uses hierarchical (or multi-level) modeling: the expression level (read count) of individual enhancers is assumed to follow negative binomial distributions whose (hyper)parameters are inferred from the data. For any given enhancer, these parameters may be identical across conditions (non-differential expression) or different across conditions (differential expression). Different enhancers each have their own α and β-parameters, all of which are assumed to be related, but they are drawn from a higher-level beta distribution whose (hyper)parameters are also estimated from data. This multi-level modeling approach results in “borrowing of strength” (inference from data on one enhancer will help inform inference for other enhancers), and “shrinkage” (parameter estimates for enhancers with little data were shrunk towards a common mean). Since the majority of all enhancers are not differentially expressed the approach is conservative (it requires a substantial amount of data to pull log-fold estimates away from zero) and thereby helps avoiding issues with multiple testing. Specifically, the analysis was performed using the EBMultiTest function in the EBSeq package. Convergence was checked by inspecting plots of the hyper-parameters α_{ib} and β_{ib} and the mixture parameter P and ensuring their values had settled at stable values at the end of the iterations. The function QQP was used to generate QQ-plots confirming that the beta prior used in the analysis was appropriate (data not shown). We used a posterior probability cutoff of 0.9 for deciding when to label an enhancer as differentially expressed, corresponding to a false discovery rate of 0.1. Labeled enhancers were then reconciled with the classification of differential expression made for TSSs as follows (P = posterior probability): IBD_{up}: $P(\text{Pattern} 2) > 0.9$ and (CDa and UCa positive log fold change vs. Ctrl) IBD_{down}: $P(\text{Pattern} 2) > 0.9$ and (CDa and UCa negative log fold change vs. Ctrl) CD_spec: $P(\text{Pattern} 4) > 0.9$ UC_spec: $P(\text{Pattern} 3) > 0.9$ There is no simple way of accounting for batch effects in the software used here, and we therefore performed the analysis independently for the two batches. Results reported in this paper are for the larger batch (58 subjects), but we found very similar results for the smaller batch (Supplementary Fig. 4d). All analyses were performed both on the larger (permissive) enhancer set, and the (smaller) restricted enhancer set. On the whole, enhancers identified as being differentially expressed in the strict data set were a subset of those identified based on analysis of the permissive data set (data not shown).

Gene ontology and protein interaction analysis. For differential expression analysis performed at the gene level, we performed enrichment tests for GO-terms and KEGG pathways using the gProfiler online tool [37], [38]. The gProfiler function. Default settings were used, except the background set (i.e., “universe”) was set to all expressed genes. The results of the enrichment analysis on each of the four sets can be found in Supplementary Data 7. Additionally, we also queried each of our gene-level differential expression sets against the STRING database of protein-protein interaction networks (using default settings, but removing proteins with no connections to any other proteins).

FANTOM5 cell specificity enrichment analysis. For TSSs that were differentially expressed, we performed enrichment tests for FANTOM5 cell specificity of TSSs. We downloaded the table of cell type specificity of CAGE tag clusters from http://fantom.gsc.riken.jp/5/datafiles/phase1.1extra/Sample_ontology_enrichment_of_CAGE_peaks/. For each TSS, we noted whether it was differentially expressed and if it overlapped (based on genomic coordinates) with a FANTOM5 cell-specific tag cluster. We used the table function from R to create a 2×2 contingency table for differential expression statistics and cell specificity, and tested for independence between rows and columns of this table using a Fisher’s Exact test (via R’s fisher.test). P-values for each cell category were corrected for multiple testing using the Benjamini–Hochberg method. The complete table of statistics for all cell type terms can be found in Supplementary Data 8.

Transcription factor binding site enrichment analysis. Promoter regions were defined as follows: for each TSS defined as differentially expressed in the respective sets (IBD$_{\text{up}}$, IBD$_{\text{down}}$, UC$_{\text{spec}}$, CD$_{\text{spec}}$), we extracted the genomic positions corresponding to ± 500 bp around each such TSS peak. Background promoters were defined as corresponding regions from TSSs, which were not part of any of the four differential expression sets (IBD$_{\text{up}}$, IBD$_{\text{down}}$, UC$_{\text{spec}}$, CD$_{\text{spec}}$). For enhancer regions, we selected enhancer regions that were differentially expressed in the respective sets (IBD$_{\text{up}}$, IBD$_{\text{down}}$, UC$_{\text{spec}}$, CD$_{\text{spec}}$). We defined the genomic positions corresponding to ± 300 bp around the midpoint of each such enhancer region. Background enhancers were defined as corresponding regions from enhancers not part of any differentially expressed set. Next, we used the HOMER tool [39] to score enrichment of sites corresponding to known motifs in the regions and background described in the previous paragraph (using default settings, except $\text{genome} = \text{hg19}$ and $\text{size} = \text{given}$, and $\text{mset} = \text{auto}$ which defaults to “vertebrate”). Sequence logos for these motifs were acquired from http://homer.salk.edu/homer/motif/HomerMotifDB/. HOMER motifs were manually paired with CAGE-defined transcription factor expression (ComBat-corrected gene-level expression).

ENCODE transcription factor ChIP peaks enrichment. ChIP-Seq peaks were downloaded from the ENCODE consortium (161 TFs from 91 cell types; see above section for heatmap visualization for details). We analyzed the enrichment of each set of TF peaks in a given set of enhancer regions (e.g., IBD$_{\text{up}}$ enhancers) by constructing a contingency table as defined in Supplementary Table 2.

Enrichment of a given TF in the region of interest was defined as log$_2$ (counts in Supplementary Table 2) and significance of enrichment was tested by Fisher’s exact test for each TF based on the above contingency table. For the analysis in Supplementary Fig. 5 the regions of interest were IBD$_{\text{up}}$ or IBD$_{\text{down}}$ enhancers and the background regions were non-differentially expressed enhancers. In Fig. 5d, we only focused on enhancers that were associated with IBD$_{\text{up}}$ TSSs by expression correlation as defined previously. Among these enhancers, we defined the regions of interest as the enhancers from large enhancer clusters (>6 enhancers in a cluster) and the background regions as singleton enhancers (not part of any cluster).

Selection of biomarkers. In order to create an initial candidate list for machine learning-based selection and classification, we reasoned that any single prioritization method has its own disadvantages. Therefore, we performed an ensemble approach where we integrated the results of multiple analysis methods each aimed to extract TSSs with high power to distinguish the subject groups. As our main goal was classification by machine learning, we will refer to these TSS regions as “features” and the associated enhancer sets (including the shared inflammatory response in UCa and CDa vs. Ctrl was strong, we divided our analysis into an IBD set of features (shared CDa and UCa up- or downregulation vs. Ctrl), and a set of features corresponding to features differentially expressed between UCa and CDa. The ensemble analysis consisted of the following components:

1. edgeR. In a similar fashion to the quasi-likelihood implementation explained above, standard edgeR (fitGLM and glmLRT) was used to test for effects of CDa vs. Ctrl, UCa vs. Ctrl, CDa vs. UCa, and CDa&UCa vs. Ctrl (shared

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03766-z | www.nature.com/naturecommunications

NATURE COMMUNICATIONS | (2018) 9:1661 | DOI: 10.1038/s41467-018-03766-z | www.nature.com/naturecommunications

15
inflammatory response), while controlling for batch effects. Extracted TSSs had a Benjamini–Hochberg FDR < 0.05 and a log2 fold change >1, for a total of 1000 sets.

ii. Partial Least Squares Discriminant Analysis (PLSDA): The plsDA function from the R-package DiscrimInR (https://cran.r-project.org/package=DiscrimInR) was used to perform PLSDA with two components, as well as using all amplified intron-spanning candidate qRT-PCR amplicons, in three groups of patients, as their component loadings. The 500 TSSs with the highest and lowest loadings for the component separating Ctrl from the remaining samples were extracted for a total of 1000 TSSs.

iii. ComBat54 followed by PCA: ComBat corrected values were used for PCA analysis. We identified the component that contributed the most to the difference between the two states and sampled 1000 TSSs from each side with the highest variation in feature loadings. We focused on PCA on the TSSs that gave the most explanations for each of the comparisons (PCA1 for shared IBD-specific signal and PCA2 for CDspec and UCspec), producing two lists for IBD (from each side one list) and one list for CDspec and UCspec.

iv. ComBat followed by limma52: Combat normalized data (as described above) was used for differential expression analysis using the limma package and the limFit function. TSSs that passed the threshold of log fold change >|1| and FDR < 0.05 were taken into account making two lists for IBD (overrepresented in UCa vs. Ctrl and overrepresented in CDa vs. Ctrl) and one list for CDsa vs. UCa.

v. Random Forest analysis. We utilized the inherent ability for Random Forests (RFs) to rank features by their importance for classification accuracy. To do this, we ran a fit function on data from the randomForest R package (https://CRAN.R-project.org/package=randomForest) on Combat-normalized TC expression data (as described above in the “Exploratory data analysis” section). To circumvent the “Large p, small N problem” with our data (74 samples, 48,593 TCS), which makes difficult to find the most predictive features, we used an iterative feature selection approach where we in each step remove a subset of the least important features. More specifically: in each iteration we first evenly divided all the data into subsets each containing max 500 features. For each of these data subsets a RF was trained to classify the patient labels based only on the data in that particular subset. Next, for each of the data subsets, we removed the 5% of features that had the lowest classification power (lowest MeanDecreaseAccuracy values) resulting in a list of features that is analyzed in the next iteration of the procedure. To make sure an important feature was not lost due to a challenging subset of data, in each iteration we randomly divided all our data into subsets 10 times. In other words, features had several chances of showing its importance. This iterative procedure was terminated when less than 200 features were left. Each RF was made with default parameters except specifying that 501 trees per forest should be generated and specifying the number of variables randomly sampled as candidates at each split by setting the “mtry” parameter to \sqrt{p} (where p is the number of features) or “mtry=1”. Using this approach we generated four candidate lists: two that enabled classification for cohort 1 and 2, but with an input of one-vs.-rest specification (i.e. UCa vs. non-UCa) using the randomForest R package55. The optimal value for the mtry parameter was found using 100 five-fold cross-validations using the caret package (https://cran.r-project.org/web/packages/caret/index.html) train function and tune=1000. Feature importance for both classification tasks were extracted using the importance function with type = 2 (mean decrease in node impurity or gini index). Primer pairs with a high importance in both complete and one-vs.-rest classification were selected as the most predictive. In addition to these RF predictive features, six gene-based features were selected to validate pathology-based findings in the first cohort.

cDNA synthesis and preamplification for cohort 2 was performed as described above for cohort 1 with an adjustment of the number of pre-amplification cycles. In this cohort CDsa was either preamplified 15 or 20 cycles, depending on expression level of the primer targets. The preamplified cDNA was diluted with low EDTA TE-buffer (VWR International) to 1:5 if the cDNA was preamplified for 15 or 20 cycles, or 1:2 if the cDNA was preamplified for 15 cycles. cDNA synthesis and qRT-PCR in the microfluidics system used BioMark 192.24 Dynamic Array (Fluidigm) following the same protocol as used for cohort 1, with volumes adjusted to the 192.24 format, as described by manufacturer. Expression data (ΔCq values) were acquired and treated similar to cohort 1 above.

qPCR analysis of monocyte and organoid samples. cDNA synthesis and pre- amplification was performed as described for cohort 1 and 2, but with an input of 300 ng monocytes (or 440 ng organoids) of RNA in a maximum of 40 μl reaction mix due to limited amounts of RNA. RNA expression was analyzed by real-time qRT-PCR in the microfluidics system BioMark 192.24 Dynamic Array (Fluidigm) as described
for cohort 2. Monocyte samples and organoid samples were placed on two independent plates.

Batch correction and expression normalization of qPCR data. For each primer all ΔΔCq values from cohort 1 and cohort 2 were batch corrected using the removeBatchEffect function from limma, giving the subject/group labels (CDa, UCa, Ctrl) as covariates and cohort and hospital of origin as batch effects and specifying the ‘robust’ method should be used for the linear models. To make organoid and monocyte data comparable with the batch corrected data a batch correction factor, obtained as the mean of the batch correction factors for the two hospitals, was applied to the organoid and monocyte data. Afterwards the batch corrected ΔΔCq values were calculated in a two-step process: (1) \(x = 2^{-1\times ΔΔCq} \), (2) \(ΔΔCq = \log_2 (x/\min(x)) \).

Preprocessing of microfluidic qPCR data. For classification analysis of cohorts 1 and 2 (see below), only Ctrl, UCa, and CDa subjects were considered. We removed one subject and one primer pair from the analysis which both had >10% "NA" values from the ΔΔCq Fluidigm data (Supplementary Data 18), making the final feature count 35. The remaining missing values (\(N = 16, 0.26\% \) of total) were imputed via bagged regression trees using the preprocess function from the “caret” R package (https://CRAN.R-project.org/package=caret) specifying methods to the imputeFunction function. Experimental practice and reporting were performed according to MIQE guidelines.

Comparison of organoid, biopsy, and monocyte qPCR data. Only measurable ΔΔCq Fluidigm data were analyzed (values labeled "missing" or "infinite" were discarded). For each qPCR primer we defined the following quantifications:

i. Inflammatory response in UCa or CDa as \(\text{log}_2(ΔΔCq_{UCa}\text{ or } CDa) \) (average \(ΔΔCq_{\text{all samples}} \))

ii. 4 or 24 h TNFα response in gut epithelia organoid as \(\text{log}_2(ΔΔCq_{\text{organoid_TNF_a_4h or TNF_a_24h}}) \) (average \(ΔΔCq_{\text{all samples_all samples}} \)).

iii. 4 or 24 h TNFα response in monocyte as \(\text{log}_2(ΔΔCq_{\text{monocyte_TNF_a_4h or TNF_a_24h}}) \) (average \(ΔΔCq_{\text{all samples_all samples}} \)).

Median of responses across replicates or subject group (CDa, UCa, monocyte TNF4 h, monocyte TNF24 h, organoid TNF 4 h and organoid TNF 24 h) was then used to indicate the IB and TNFα response of the group. Specifically, if the median IB or TNFα response of a qPCR primer in a sample group was >0, it was labeled upregulated in the sample group, and vice versa. qPCR primers with missing median in any of the sample groups were discarded, resulting in analysis of 30 qPCR primers in Fig. 2f and Supplementary Fig. 3b, c.

Real-time quantitative PCR. For specific enhancer RNA expression validations (Fig. 4), we used the Applied Biosystems® QuantStudio™ 6 Flex Real-Time PCR System, with the 384-well plate. This platform allows for higher reaction volumes compared to the Fluidigm system. The cDNA preparations were done as described for cohort 1. All samples were run in triplicates in 5 μl reaction volumes using SYBR® Green Master Mix (Life Technologies) as described by manufacturer, with a primer concentration of 0.5 μM, and under the following conditions: 50 °C for 2 min, 95 °C for 2 min, 45 cycles of 95 °C for 15 s, 58 °C for 1 min. All results were normalized to the reference gene PIA54.

Prediction of subject diagnosis using random forests. For all three classification analyses in Fig. 7, we used a two-step RF classification approach with the randomForest R package (https://CRAN.R-project.org/package=randomForest) in this approach, the first step was a RF trained to distinguish IBD (CDa and UCa) from Ctrl and the second step was a RF trained to distinguish CDa from UCa. The two-step approach was chosen over an all-in-one approach because, based on the pattern of overlapping genes in each pathway the qPCR data. From the 569 original pathways in the database, 16 returned a non-null score. These scores were then used to provide 16 supplemental features, on top of the 35 original ones, for the training of the classifier. After parameter optimization on the training data (max_depth, min_child_weight and subsample), the final classifier was used on the cohort 2.

Analysis of GWAS data. A recent version of the GWAS catalog was downloaded (2016-12-15) and lifted to hg19 using the gwasucR R-package (http://bioconductor.org/package=gwasucR/). To calculate linkage disequilibrium (LD), we used geno-type data from whole-genome sequencing of Europeans. This was obtained from the VCF files from the 1000 Genomes CEU population release 20130502. We use only diallelic SNPs with <5% missing genotypes that were polymorphic in the CEU population45. SNPs from the GWAS catalog were merged with 1000G SNPs by genomic position, and PLINK63 was used to calculate LD between all SNPs within 500 kb (using the function plink --r2 --ld-window-kb 500 --ld-window 99999 --ld-window-r2 0.5). Pairs of SNPs were considered to be in LD if \(R^2 > 0.75 \). LD clumps were found by expanding all SNPs with their associated LD-SNPs, and then reducing the set by merging overlapping regions.

To assess LD cliff enrichment, Empirical Bayes shrinkage was performed with the ebb R-package (https://github.com/dgtwo/ebbe) package using the ebb_fit_prior and augmer functions (with default arguments). Prior means were calculated as \(\alpha = 1001 \) and added to the plot of shrunken proportions. LD-clump (one-sided) enrichment was calculated using the kegg function from the limma R-package67, but using user-supplied sets: universe was set to all TSSs/ enhancers, the respective differentially expressed sets and gene_pathway set to all gene sets overlapping LD clumps for a GWAS disease. No trend based on an additional covariate was used.

Partitioned heritability analysis was performed using the ldsc tool from (https://github.com/bulik/lodsc40). The two analyses below were done based on recommended practice by the creators of the tool: https://github.com/bulik/lodsc/wiki/LD-Score-Estimation-Tutorial, https://github.com/bulik/lodsc/wiki/Partitioned-Heritability). LD-scores were calculated for TSSs, enhancers, IB and IB, sets (including both promoter (−500k/+100 bp around TSS peaks) and enhancers (±300 bp around enhancer midpoints)). IBN summary statistics were estimated from the International IBD Genomics Consortium, https://www.ibdgenetics.org/downloads.html (downloaded 2016-12-22). SNP summary statistics were processed using munge_sumstats.py (with settings -N-cas 12882 -N-con 21770 for sample sizes (as described in ref. 4)). Base model enrichment statistics for this set of GWAS summary statistics can be seen in Supplementary Fig. 8b. All four extra categories were added to the baseline model for Fig. 6d. Additionally, each new annotation was separately added to the baseline model in sequence, similar to the cell-type group analysis from the original paper40. Proportions, enrichments and coefficients were obtained from each model and compared (Supplementary Fig. 8c).

Data availability. CAGE data from this study has been deposited in GEO database under accession number GSE95437. Microfluidics qPCR data are available in Supplementary Data 9, 17, 18.
Acknowledgements

Work in the A.S. laboratory was supported by grants from the Lundbeck Foundation, the Novo Nordisk Foundation, Innovation Fund Denmark, the Danish Council for Independent Research and Elixir Denmark. M.V. was supported by a Marie Skłodowska-Curie Individual Fellowship (grant 659505). O.H.N. was supported by Axel Muusfeldts Foundation, Holger og Ruth Hesses Mindefond, P.A. Messerchmidt og Hustrus Foundation, and the Foundation of Aase and Ejnar Danielsen. R.A. was supported by grants from the Danish Council for Independent Research and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant 638273). K.B.J. was supported by the Lundbeck Foundation and Danish Cancer Society. We thank Anders Albrechtsen for help with statistical genetics analyses, and Lene Buhl Riis for help with histology.

Author contributions

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-03766-z.

Competing interests: The authors A.S., M.B., J.B., M.V., M.T., K.V.S., O.H.N. and J.B. have filed a patent for the method for classifying CD/UC vs. control based on qPCR, based on this study. The remaining authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.