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Introduction 
Titanium and its alloys have become the workhorse of orthopaedic applications in the past few 
decades because of their desirable material properties, such as excellent corrosion resistance and 
biocompatibility, high strength to weight ratio as well as high toughness. The major problems limiting 
the performance of titanium-based orthopaedic implants are their poor resistance to wear and the 
generation of debris when the implants are damaged or fractured in service. It is known that implant 
debris can cause inflammation and osteolysis [1, 2]. Surface modification of titanium by laser nitriding 
is an efficient method to improve the surface hardness and wear properties [3-8]. The improvement 
of surface properties by laser nitriding comes from the formation of a titanium nitride (TiN) layer. 
Laser-formed TiN layers offer competitive advantages over the TiN layers created by other 
conventional methods, such as PVD, CVD, ion implantation, etc. The key advantages are high layer 
thickness (>50 µm) and no issue of delamination, i.e. layers are metallurgically bonded to the substrate. 
On top of this, a laser is a highly flexible and accurate tool which can perform nitriding on selected 
areas without causing undesired heating of the substrate.  

Briefly, the laser nitriding process starts by scanning the laser beam across the substrate surface in a 
nitrogen-filled chamber. When the substrate surface is heated up by the laser beam above its melting 
point, the laser-irradiated area will melt and a plasma forms above the surface. The high temperature 
and pressure created above the surface, resulting from the laser-plasma-material interactions, cause 
ionization and dissociation of nitrogen [9]. The ionized and dissociated nitrogen, namely nitrogen ions 
and atoms, will be absorbed by the melted surface and the TiN layer will form after solidification [10-
12]. The physical reactions involved in the laser nitriding process are detailed by Höche and Schaaf 
[13]. The sequence of how nitrogen is activated by laser energy and absorbed by the titanium 
substrate to form TiN is provided by Kloosterman and DeHossen [14].  

Despite laser nitriding possessing several attractive characteristics, the process requires a gas chamber 
and this greatly limits the practicability. For example, it is difficult to create a homogenous nitride layer 
on complex-shaped parts or circular surfaces, such as the tapered surface of a femoral stem or the 
ball-shaped surface of a femoral head. In other words, translation of the results from literature (i.e. 
laser nitriding in nitrogen-filled chamber) to industrial applications is unrealistic given that the nitride 
properties are not only controlled by the process parameters but also by the design of the gas chamber 
which determines the gas dynamic factors. To overcome this drawback, direct laser nitriding in open 
atmosphere (or without gas chamber) has been proposed, i.e. nitrogen is directly delivered to the 
laser-irradiated area via a coaxial nozzle in the laser head.  

A brief summary of the literature on direct laser nitriding in open atmosphere is provided below. Chen 
et al. [15] used a specially developed nozzle to perform direct nitriding on Ti6Al4V using pulsed Nd:YAG 
laser, and investigated how the gas dynamic factors affect the quality of the nitride layer. Yu et al. [16] 
developed a hybrid laser-plasma nitriding method to obtain an oxide-free TiN layer on pure titanium. 
They performed a direct nitriding process using CW CO2 laser coupled with a plasma gun. Nasser et al. 
[17] investigated the effect of laser-induced plasma in direct nitriding using CW CO2 laser. They 
identified a process window for the formation of a near-stoichiometric, oxide-free TiN layer. Kamat et 
al. [18] produced the TiN layers on pure titanium by direct nitriding using CW CO2 laser. Two different 
gas conditions, namely pure nitrogen and mixed nitrogen-argon were used in their nitriding 
experiments, and the effect of process parameters on the microstructure of the nitride layers were 
studied. May et al. [19] employed a custom coaxial nozzle for direct nitriding using pulsed fibre laser. 
They reported that the topography and wetting behaviour of the nitride layer can be modified by 
varying laser repetition rates.  

Existing results on the direct laser nitriding process provide insights on the microstructure and some 
surface characteristics namely topography and wettability of the nitride layers. The success of the 
direct nitriding process relies heavily on the prevention of surface oxidation during the nitriding 
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process, i.e. preventing the titanium substrate reacting faster with oxygen from the surrounding air 
than with nitrogen from the coaxial gas nozzle. It is believed that discolouration of the nitride layer, 
as a consequence of surface oxidation, induces uncertainty in the surface properties. However, the 
surface discolouration and its relationships with the process parameters are still not clearly defined.  

In the present study, direct laser nitriding on medical grade pure titanium and Ti6Al4V (hereafter 
called TiG2 and TiG5 respectively) in open atmosphere was attempted using an in-house CW fibre 
laser, with particular emphasis on investigating the surface discolouration by image analysis and on 
optimising the process parameters to obtain the gold-coloured nitride surfaces. The surface 
morphology, composition, microstructure, micro-hardness, and tribological properties of the nitrided 
TiG2 and TiG5 surfaces were carefully characterized and compared. In addition to conventional 
characterization of friction and gravimetric wear properties, the hydrodynamic size distribution of 
wear debris was characterized by means of dynamic light scattering (DLS). While this technique is 
gaining popularity in characterization of wear particles in tribosystems [20-22], its application to 
titanium materials has not yet been reported in the literature.  
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Materials and Methods 
(a) Materials  

The materials used for laser nitriding were Grade 2 and Grade 5 titanium alloys sourced from Zapp 
Precision Metals GmbH (Schwerte, Germany), corresponding to commercially pure Ti (99.2 % pure) 
and Ti6Al4V, respectively, i.e. TiG2 and TiG5.  The materials were fabricated into disk and pin forms 
with the size of 30 mm (diameter) x 5 mm (thickness) and 10 mm (diameter) x 20 mm (length). Before 
laser experimentation, the sample surfaces were ground sequentially with a series of SiC papers from 
120 to 400 grits following standard metallography procedures to remove pre-existing oxides and 
ensure surface homogeneity. The samples were then ultrasonically cleaned in an ethanol bath for 10 
mins, rinsed in distilled water for another 10 mins, and finally dried thoroughly in a cold air stream.  

(b) Laser Nitriding Experiments 

The laser nitriding process was performed using the automated continuous-wave (CW) 200W fiber 
laser system. The laser system was integrated by Micro Lasersystems BV (Driel, The Netherlands) and 
the fibre laser was manufactured by SPI Lasers UK Ltd (Southampton, UK). The wavelength of the laser 
was 1064 nm (or 1.06 µm). The disk and pin samples were irradiated with the laser beam using the 
following processing parameters: laser power between 40 W and 50W, scanning speed of 25 mm/s 
(meandered scan with lateral movement of 100 µm in x direction), stand-off distance of 1.5 mm (laser 
spot size was measured as 100 µm) and shielding with high purity N2 to a pressure range between 5 
bar and 7 bar. The N2 gas was delivered coaxially with the laser beam via a standard laser nozzle with 
an outlet diameter of 2 mm. The laser-irradiated area on the disc samples was 18 mm x 18 mm while 
on the pin samples it was 8 mm x 8 mm. The laser-irradiated surfaces were fully covered by the nitride 
tracks with overlapping ratio of 50 % in track width. The laser-nitrided disks were tested and analysed 
in all experiments associated with this study while the laser-nitrided pins were only used in the wear 
tests. The laser nitriding setup and the scanning movement of laser beam are schematically presented 
in Figure 1.  

(c) ImageJ Analysis 

An ideal laser-nitrided surface has a gold colour. Any colours deviating from the gold colour of the 
nitrided surface were considered as discolouration. The measurements of surface discolouration were 
performed using the image analysis software: ImageJ (downloaded from the NIH website: 
http://rsb.info.nih.gov/ij). An example of the ImageJ analysis is demonstrated in Figure 2 (a-b). The 
procedures of conducting the ImageJ analysis were described as follows:  Firstly, surface morphology 
of the nitrided samples was captured by an optical microscope and exported as a high-resolution 
micrograph (see example in Figure 2 (a)). Then the high-resolution micrograph was imported in the 
ImageJ software for image analysis. Finally, the discoloured areas (or blue-coloured areas) in the 
nitride surfaces were measured using the Colour Threshold function in ImageJ (see example in Figure 
2(b) for the image after measurement). Detailed procedures for the ImageJ analysis were given in the 
authors’ previous study [23]. The concentration of surface discoloration (i.e. dividing the sum of 
discoloured areas by the total nitrided area) was used as a measure of the effects of processing 
parameters: N2 pressure and laser power on the quality of the nitride surfaces.  

(d) Surface Morphology, Microstructure and Composition Analysis  

Standard metallurgical procedures were used to prepare cross-sectioned samples for microstructure 
analysis by optical microscope. Kroll's reagent was used for etching. Time for etching was between 15 
and 20 seconds. The surface morphology and chemical composition of the samples were analysed by 
SEM and EDX, respectively. All SEM images and EDX data were acquired with a 20 kV beam, at 
magnifications of x2000 and using backscattered electron (BSD) detection. The phase structure of the 
surface layers was analysed by XRD. Measurement was performed with a Bruker D8 Advance 
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diffractometer using copper K<alpha> radiation, nickel K<beta> filter, soller slits on the source and 
detector arm, divergence slit set to automatic to illuminate a 1 mm strip on the sample area, and the 
acceptance slit fixed at 9.5 mm. Standard theta/2-theta geometry was used (Bragg-Brentano).  

(e) Vickers Hardness Measurements  

Hardness values in the cross-sectional surfaces were measured using a Vickers hardness testing ma-
chine under constant load of 200 kgf. Indent marks were made in different locations down from the 
surface nitride layer to base metal. The distance between each indent was 50 µm. It is known that 
grain boundary can affect the hardness by the Hall-Petch relation [24], i.e. grain boundary is a barrier 
to resist dislocation motion. In the Vickers hardness test, if the indent mark is larger than the grain 
size, the resulting hardness is an indication of the combined effect of grain interior and grain boundary. 
Depending on the location of indentation, the hardness might be varied due to the difference in ratio 
between areas of grain interior and boundary in the indent mark. Taking this into consideration, the 
reported result was an average hardness taken from seven indent marks in each region, namely ni-
trided area, HAZ and base metal. The standard deviation was presented along with the average hard-
ness to indicate the variance of measurements. 

(f) Surface Roughness Measurements 

Surface roughness values (Ra) were measured using a Mitutoyo surface roughness tester. The Ra val-
ues were the average of 12 measurements taken in different locations in a direction perpendicular to 
the moving direction of laser beam. 

(g) Friction and Wear properties 

Tribostress was applied to titanium samples via self-mated sliding contacts of TiG2/TiG2 and TiG5/TiG5 
pairs, as well as their laser-nitrided counterparts, by means of pin-on-disk tribometry (CMS Instru-
ments SA, Peseux, Switzerland) in fetal bovine serum (FBS, Sigma Aldrich) as model synovial fluid. The 
contact configuration was flat-on-flat by employing flat-ended, cylindrical pin and disk as described 
above. The applied load, sliding speed, and total sliding distance were 10 N, 50 mm/s, and 400 m, 
respectively. Coefficient of friction (COF), defined as friction/load, was recorded over the entire sliding 
contacts with pin-on-disk tribometry. Wear properties of titanium samples were characterized in two 
different ways. Firstly, mass changes of both pin and disk before and after tribostress, i.e. gravimetric 
wear, were determined by balance. Secondly, distribution of wear particle size in FBS was determined 
by characterization of hydrodynamic diameter, DH, with dynamic light scattering (DLS, Zetasizer ZSP 
model, Malvern Instruments Ltd, Worcestershire, UK). FBS with dispersed wear debris was re-col-
lected and transferred to cuvettes or culture tubes using a micropipette for DLS analysis and photog-
raphy, respectively. No additional solvent was used for re-collection of FBS. Disposable cuvettes 
(PMMA, Brand) were used for DLS measurements and disposable round bottom sterile culture tubes 
(PS, VWR North America) were used for photography. 
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was observed near the boundary between the nitrided area and heat-affected zone (HAZ). The 
boundary line was irregular. The HAZ (in Figure 9 (c)) showed a finer microstructure compared with 
the nitrided area. The depth of the nitrided area and HAZ were around 68 µm and 40 µm, respectively. 
Beneath the HAZ, the microstructure of original base metal, namely equiaxed alpha phases can be 
seen in Figure 9 (a).  

In the nitrided area of TiG5 (Figure 9 (d-f)), a distinct remelted zone can be found in the topmost 
surface with a clear boundary line separating the remelted zone and the previously-formed dendrite 
zone. Underlying the boundary, a graded microstructure can be seen, i.e. the TiN dendrites 
concentrated in the upper part and the amount of dendrites decreased in the lower part. In 
comparison with the TiG2, the dendrites were smaller with more space between them. No mushy 
zone was found but secondary needle-like phases appeared. An irregular boundary can still be 
observed between the nitrided area and HAZ. The HAZ (in Figure 9 (e)) showed a refined 
microstructure. The base metal beneath the HAZ (in Figure 9 (f)) exhibited a bimodal microstructure 
consisting of lamellar structure (alpha + beta area) and equiaxed alpha-phases. The depth of the 
nitrided zone was 87 µm and that of the HAZ was 56 µm.  

Figure 10 (a-b) show the results of XRD measurements on TiG2 and TiG5 before and after laser 
nitriding. As observed from Figure 10 (a-b), the laser-nitrided TiG2 and TiG5 comprised of two distinct 
phases: cubic titanium nitride (c-TiN) preferentially grown on (111) and (200) planes and hexagonal 
alpha-titanium on (011) plane. In the case of nitrided TiG2, the intensity of the TiN (111) peak was 
slightly higher than that of the TiN (200), whereas the intensity of the TiN (200) peak in the nitrided 
TiG5 was much stronger than that of the TiN (111) peak. No beta phases were detected from the laser-
nitrided TiG5 surface. Moreover, only a very small amount of TiO2 (101) was detected from the nitride 
surfaces of TiG2 and TiG5, indicating that the high pressure zone created between the nozzle and the 
surface was effective in blocking the oxygen intruding from the open air. 

According to the Ti-N phase diagram, four different phases, namely alpha Ti, beta Ti, Ti2N and TiN can 
be found in the microstructure when Ti reacts with N. The resulting microstructure is determined by 
the temperature and nitrogen concentration in the thermomechanical process. From the XRD results, 
beta-Ti and Ti2N were not detected. The microstructure in the nitrided area of TiG2 and TiG5 was a 
mixture of the TiN dendrites and the nitrogen-rich alpha Ti phases. The absence of beta-Ti in the 
nitrided TiG5 is due to the alpha stabilising effect of nitrogen which suppressed the formation of beta 
phases during solidification. 

The model proposed by Labudovic et al. [31] suggests that solidification of the nitrided area 
commences with the TiN dendrites due to its higher melting point (~2,930 °C) compared to the alpha 
phases (~1670 °C), i.e. TiN forms first at the surface of the melt pool when it solidifies. In the laser 
nitriding process, a fully covered surface was produced by overlapping the laser beam with the 
adjacent previously-nitrided area. It has been reported that the temperature in the melt pool of the 
previously-nitrided area can exceed the melting point of TiN and cause remelting of the surface TiN 
dendrites. Consequently, the thin and continuous surface layer in the nitrided TiG2 was the remelted 
TiN dendrites. On the other hand, it is not surprising to see the irregular boundary line between the 
nitrided area and HAZ in the TiG2 and TiG5 samples given that the formation of TiN is an exothermic 
reaction. The additional heat energy released by the formation of TiN dendrites near the boundary 
can cause local melting in the boundary area. The situation was more obvious in the TiG2 because of 
the presence of mushy zone.  

It should be noted that the differences of dendrite size and distribution between TiG2 and TiG5 are 
attributed to the differences in temperature and nitrogen concentration in the melt pools of the two 
materials due to their different interactions with the laser radiation in the near-infrared range, namely 
1.06 µm (as described in the previous sections). The secondary needle-like phases in the nitrided area 
of TiG5 resulted from the rapid cooling associated with the laser nitriding process, triggering the 
martensitic transformation of high temperature beta phase to alpha prime phase [32]. 
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wear particles with the DH ranging from ca. 100 nm to 10,000 nm, although TiG2 is slightly more widely 
distributed than TiG5. However, the Z-average for TiG5 (689.9 nm) was somewhat larger than that of 
TiG2 (493.1 nm). The Z-average of laser-nitrided TiG2 and TiG5 were 65.5 nm and 65.0 nm, respectively.  
The excellent wear-resistant effect of laser-nitriding of Ti surfaces was therefore confirmed by DLS.  
 
Conclusions 

In this work, the possibilities of performing laser nitriding on TiG2 and TiG5 surfaces by CW fibre laser 
in open air environment were investigated. Image analysis was carried out to quantify the concentra-
tion of discolouration in the nitride surfaces. The cross-section microstructure, surface features and 
mechanical properties of the laser-formed nitride layers were analysed. The following conclusions 
were reached:  

(a) TiG2 and TiG5 reacted differently with the laser radiation at 1.06 µm wavelength in laser nitriding 
as evidenced by differences in the surface colour and morphology, as well as the size and distri-
bution of dendrites in the nitride layers; 

(b) Laser power and N2 pressure were found to be critical to affect the quality of the nitride surfaces; 

(c) The optimized processing parameters to produce the uniform and gold-coloured nitride layers in 
TiG2 and TiG5 were identified as 40 W (laser power), 25 mm/s (scanning speed), 1.5 mm (stand-
off distance) and 5 bar (N2 pressure);   

(d) The hardness of nitride layers was dependent on the volume fraction and crystallographic orien-
tation of TiN dendrites.  

(e) Both friction and wear properties were strongly affected by the hardness and microstructure of Ti 
samples and direct laser nitriding led to substantial improvement in their wear resistant properties. 
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Table and Figures 
Table 1 – EDX composition results (metal elements) of TiG2 and TiG5 before and after laser nitriding 

Elements 
Untreated TiG2 

(at. %) 
Laser-nitrided TiG2 

(at. %) 
Untreated TiG5 

(at. %) 
Laser-nitrided TiG5 

(at. %) 
Ti 77.3 74.5 77.6 62.1 
Al --- --- 8.6 3.7 
V --- --- 2.7 1.7 
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Figure 1 – Schematic diagram of the laser nitriding setup (left) and the scanning movement of the laser 
beam (right). High purity N2 is delivered coaxially via the laser nozzle. High pressure N2 zone is created 
between the substrate surface and nozzle tip to prevent O2 intruding from surrounding air. 

 

 

 

 
Figure 2 (a-b) – Example of ImageJ analysis showing the measurement of discoloured areas (i.e. blue-
coloured area) in the TiG2 nitrided surface. The discoloured areas predominantly appeared in the 
crests of the nitride tracks. The shaded area in (b) corresponds to the blue-coloured area in (a). The 
laser processing parameters: laser power, scanning speed, stand-off distance and N2 pressure were 40 
W, 25 mm/s, 1.5 mm and 6 bar respectively.  
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Figure 3 (a-f) – Optical micrographs for the surfaces of laser-nitrided (a-c) TiG2 and (d-f) TiG5 produced 
by different N2 pressure (5, 6 and 7 bar) in the laser nitriding experiments. Surface discolouration 
started to appear at 6 bar and became significant at 7 bar. The laser processing parameters: laser 
power, scanning speed and stand-off distance were 40 W, 25 mm/s and 1.5 mm, respectively.   

 


















