Compressive Online Robust Principal Component Analysis with Multiple Prior Information

Van Luong, Huynh; Deligiannis, Nikos; Seiler, Jürgen; Kaup, Andre; Forchhammer, Søren

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
1. Motivation

- Applications: Computer vision, web data analysis, anomaly detection, and data visualization, etc.

- Robust Principal Component Analysis (RPCA): Batch-based, decomposes all data samples (matrix M) into low-rank (L) and sparse (S), e.g., all frames in a video, high computational and memory requirements.

$$\min_{L, S} \|L\|_2 + \lambda \|S\|_1 \text{ subject to } M = L + S$$

Challenges:

- Online method processing a sequence of signals per time instance from a small set of measurements $y_t = \Phi(x_t + v_t)$

$$M_t = L + S_t \text{ into } S_t = [x_1, x_2 \ldots, x_t] \text{ and } L_t = [v_1, v_2 \ldots, v_t]$$

- Minimization at time instance t

$$\min_{L_t, S_t} \|L_t\|_2 + \lambda \|S_t\|_1 \text{ subject to } y_t = \Phi(x_t + v_t)$$

where $\lambda > 0$ and $\beta > 0$ are weights across the side information signals, and W_0 is a diagonal matrix with weights for each element in the side information signal x_t, namely, $W_0 = \|w_0\|_0 \geq \|w_0\|_1$, with $w_0 > 0$ being the weight for the i-th element in the x_i vector.

2. Compressive Online RPCA (CORPCA) With Multiple Prior Information

Problem formulation:

- Incorporating multiple prior information: at time instance t we observe $y_t = \Phi(x_t + v_t)$ with $y_t \in \mathbb{R}^n$ given priors Z_{t-1} and B_{t-1} from $\{x_1, \ldots, x_{t-1}\}$ and $\{v_1, \ldots, v_{t-1}\}$

$$\min_{L_t, S_t} \|L_t\|_2 + \lambda \|S_t\|_1 \text{ subject to } M_t = L_t + S_t$$

Solving the ℓ_1 minimization problem:

$$\min_{x_t, v_t} \|H^{-1}(x_t, v_t; Z_{t-1}, B_{t-1})\|_2^2 + \lambda \|W^2(x_t - Z_{t-1})\|_1 + \beta \|B_{t-1}, v_t\|_1, \text{ subject to } y_t = \Phi(x_t + v_t)$$

where $\lambda > 0$ and $\beta > 0$ are weights across the side information signals, and W_0 is a diagonal matrix with weights for each element in the side information signal x_t, namely, $W_0 = \|w_0\|_0 \geq \|w_0\|_1$, with $w_0 > 0$ being the weight for the i-th element in the x_i vector.

The CORPCA algorithm:

- Solving ℓ_1 minimization via the soft thresholding operator and the single value thresholding operator, at iteration $k = 1$

$$\begin{align*}
\hat{x}_t^{(1)} &= \arg \min_{x_t} \|h(y_t) - (\|y_t\|_2^2 + \lambda \|W(x_t - y_t)\|_1)\|_2^2 \\
\hat{v}_t^{(1)} &= \arg \min_{v_t} \|h(y_t) - (\|y_t\|_2^2 + \lambda \|W(x_t - y_t)\|_1)\|_2^2
\end{align*}$$

where $f(x_t)$ is a $(1/2) \|\Phi(x_t + v_t) - y_t\|_2^2$ function, $y_t = \sum_{i=1}^{n} y_i^{(1)}$, and $h(x_t) = \|B_{t-1}, v_t\|_1$

- Updating weights β and W_{0j}

- After solving for time instance t: Prior updates

$$Z_t := \{z_1, \ldots, z_{t-1}\}$$

$$B_t = U_t(:, 1 : d) \Gamma_{t}^{1/2} S_t(1 : d, 1 : d) V_t(1 : d, 1 : d)^{T}$$

3. Experimental Results

Compressive video foreground-background separation

- Considering two videos, Bootstrap (60x80 pixels) and Curtain (64x80 pixels) having a static and a dynamic background, respectively.

- Background-foreground video separation with full access to the video data.

- Compressive separating by varying rates on the number of measurements m over the dimension of the data n

4. Summary

Solution for an ℓ_1 minimization

- Incorporating efficiently multiple prior information

- Updating iteratively weights

The proposed CORPCA algorithm

- Processing a data vector per time instance using compressive measurements

- Solving the ℓ_1 minimization and updating priors for the next instance

Evaluation of CORPCA on synthetic data and actual video data

- Outperforming classical compressive sensing (CS) (ℓ_1 minimization) and CS with single prior information (ℓ_1 minimization)

- The superior performance improvement compared to the existing methods

CORPCA source code, test sequences, and the corresponding outcomes.

[Available]: https://github.com/huytanhoc/corppca