Components and materials for electrochemical energy conversion (KDFuelCell)

Jensen, Jens Oluf; Kirkebæk, Andreas; Cleemann, Lars Nilausen; Li, Qingfeng; Jensen, Kim Degn; Stephens, Ifan; Chorkendorff, Ib; Hjuler, Hans Aage; Steenberg, Thomas; Juul Larsen, Mikkel

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
COMPONENTS AND MATERIALS FOR ELECTROCHEMICAL ENERGY CONVERSION (KDFuelCell)
A Korean-Danish Collaborative Effort

Jens Oluf JENSEN¹, Andreas KIRKEBÆK¹, Lars Nilausen CLEEMANN¹, Qingfeng LI¹, Kim Degn JENSEN², Ifan STEPHENS², Ib CHORKENDORFF², Hans Aage HJULER³, Thomas STEENBERG³, Mikkel Juul LARSEN⁴, Geir HELGESEN⁵, Dirk HENKENSMEIER⁶, HakSoo HAN⁷ and JinSoo PARK⁸

¹Department of Energy Conversion and Storage, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark, jojen@dtu.dk
²Center for Individual Nanoparticle Functionality (CINF), Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
³Danish Power Systems, Egeskovevej 6C, DK-3490 Kvistgård, Denmark
⁴EWII Fuel Cells A/S, Emil Neckelmanns Vej 15 A&B, DK-5220 Odense SØ, Denmark
⁵Nordic Institute of Asian Studies, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark
⁶Korea Institute for Science & Technology, Fuel Cell Reserch Center, 5 Hwarang 14 Gil, Seoul 02792, South Korea
⁷Yonsei University, Department of Chemical & Biomolecular Engineering, Seoul 120749, South Korea
⁸Department of Environmental Engineering, College of Engineering, Sangmyung University, 31 Sangmyungdae Gil, Cheonan 31066, Chungnam Province, South Korea.

Two lines of development ran in parallel in KDFuelCell, namely ion conducting membranes and catalysts, both for high-temperature PEM fuel cells. The membrane development targeted more durable and stronger membranes for high-temperature PEM fuel cells. The catalyst work was focused on the somewhat impeded catalytic activity of platinum in contact with phosphoric acid. The cultural aspect of the bilateral collaboration was treated in two bicultural workshops coordinated by Nordic Institute for Asia Studies.

The project was originally funded by the Strategic Research Council in Denmark as an international project for strengthening the scientific collaboration with South Korea. Today it is managed by Innovation Fund Denmark. The project ended ultimo September 2017. Selected results from all the three sub-projects will be presented.