Improving the representation of modal choice into bottom-up optimization energy system models

Tattini, Jacopo; Ramea, Kalai; Gargiulo, Maurizio; Yang, Christopher; Mulholland, Eamonn; Yeh, Sonia; Karlsson, Kenneth Bernard

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Tattini, J., Ramea, K., Gargiulo, M., Yang, C., Mulholland, E., Yeh, S., & Karlsson, K. B. (2017). Improving the representation of modal choice into bottom-up optimization energy system models. Poster session presented at wholeSEM Annual Conference 2017, London, United Kingdom.
Improving the representation of modal choice into bottom-up optimization energy system models

Jacopo Tattini1, Kalai Ramea2, Maurizio Gargiulo2, Chris Yang2, Eamonn Mulholland3, Sonia Yeh4, Kenneth Karlsson5
1Technical University of Denmark, 2University of California Davis, 3E4SMA, 4University College Cork, 5Chalmers University of Technology

MOTIVATION AND OBJECTIVE

- Bottom-up energy system models (E4 models) describe in detail the technical, economic and environmental characteristics of the technologies
- They are weak in representing consumer behaviour: only one average-representative decision maker is considered [1], [2]
- The behavioural dimension cannot be neglected, as it is fundamental in decision making in the transportation sector [3]
- This study proposes and discusses a novel methodology to incorporate modal choice within E4 models

METHODOLOGY AND MODEL

- The new approach has been named MoCho-TIMES (Modal Choice in TIMES)
- MoCho-TIMES has been tested for the standalone transportation sector of TIMES-DK, the TIMES energy system model of Denmark
- The methodology requires a transport model, consistent with the scope of the analysis, as a support model (Figure 1). For Denmark this is the LTM [4]
- The methodology consists in two main steps:
 1. DEMAND SIDE HETEROGENEOUS
 2. INTANGIBLE COSTS

![Figure 1: Data provided from the support model LTM to TIMES](image)

Intangible Cost\(_{\text{mcg}}\) = Level of Service\(_{\text{mcg}}\) + Value of Time\(_{\text{mcg}}\)

- Level of Service\(_{\text{car}}\) = \(f\) (Travel Time, Congestion Time, Ferry Time)
- Level of Service\(_{\text{public transport}}\) = \(f\) (In Vehicle Time, Waiting Times, Walking Time)
- Level of Service\(_{\text{commodity travel}}\) = \(f\) (Travel Time)

![Figure 2: Heterogeneous consumer groups with different modal preferences](image)

![Figure 3: Intangible costs for very low income group in 2030](image)

![Figure 4: Scheme of MoCho-TIMES](image)

MODELS STRUCTURE

- Heterogeneity consists in a travel demand per each consumer group
- Intangible costs are included as an additional cost for each mode and each consumer group
- There must be enough infrastructure to accommodate the modal demand
- Each mode has associated a time consumption (speed), subject to a travel time budget
- The expenditure in car and transit is limited for each consumer group by a monetary budget, which accounts the perceived costs

RESULTS

1. Validation of MoCho-TIMES
MoCho-TIMES is reliable in determining modal shares because it is able to reproduce the results of its support model LTM satisfactorily (Figure 5).

2. Scenario Analysis
The model is tested under alternative assumptions regarding the variables in the scenario matrix (Figure 6). Results considering CO\(_2\) emissions and modal shares are presented in Figures 7-8.

![Figure 5: Comparison of modal shares between LTM and TIMES](image)

![Figure 6: Scenario matrix](image)

![Figure 7: CO\(_2\) emissions from the transportation sector in the four scenarios](image)

![Figure 8: Modal shares in the four scenarios](image)

CONCLUSIONS

- MoCho-TIMES introduces endogenous modal choice within an integrated energy system model
- MoCho-TIMES allows exploring how modal shift occurs in the different regions and types of urbanization and provides an insight on the modes adopted by the different consumer groups in the future
- Heterogeneity avoids the "winner-takes-all" phenomenon: each group of consumers chooses its optimal modes, thus resulting in a variety of modes
- A new set of variables regarding the level of service and the consumer perception of the modes is introduced in the model, which allows performing new types of policy analysis to understand barriers to adoption of more sustainable modes
- From the case study of Denmark it results that authority commitment and in particular availability of infrastructure for transit and non-motorized modes are fundamental for reducing transport related CO\(_2\) emissions

REFERENCES

Contacting the Author: Jacopo Tattini (jacopo@dtu.dk)