Diffusion of dopants in nanostructured black silicon for application in solar cells

Stilling-Andersen, Andreas Raimund; Solodovnikova, Olga; Davidsen, Rasmus Schmidt; Iandolo, Beniamino

Published in:
Book of Abstracts, Sustain 2017

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Diffusion of dopants in nanostructured black silicon for application in solar cells

Andreas R. Stilling-Andersen1, Olga Solodovnikova2,*, Rasmus Schmidt Davidsen3, Beniamino Iandolo4

1,2: DTU Nanotech
3,4: DTU Nanotech Postdoc
*Corresponding author email: s163967@student.dtu.dk

Black silicon is a promising material for solar cells as its nanostructured surface can suppress optical reflection in a broad spectral range \cite{1}. This eliminates the need for a conventional antireflective coating, although a passivation layer is still required to minimize surface recombination \cite{2}. Black silicon also has the potential to increase cell efficiency thanks to its superior absorption of light \cite{2} \cite{3}. The majority of industrial silicon cells consist of a p-type silicon substrate into which phosphorous is diffused using a liquid POCl\textsubscript{3} source at high temperatures, thus creating the p-n junction \cite{4} \cite{5}. Since black silicon has characteristic features in the range of 100-500 nm, diffusion of phosphorous is challenging to characterize with standard methods such as the macroscopic 4-point probe, and therefore to optimize \cite{6}. This is one of the issues that make black silicon difficult to introduce in standard production lines of solar cells. Here, we have investigated the effect of temperature and time during the doping process (which consists of deposition of a phosphorous-doped glass and a phosphorous drive-in step) on the reflectivity and sheet resistance of black silicon fabricated by reactive ion etch. Our results show that decreasing temperatures and times during the doping process, as compared to values often used on conventionally wet-textured silicon by the industry, provide more suitable values of reflectivity and sheet resistance for device fabrication.

Figure 1: Left shows black silicon and silicon doped at 850°C with a time of 15 min. Right shows black silicon and silicon doped at 1050°C with a time of 30 min. This demonstrates the impact of high temperatures and time on the reflectivity of black silicon.

References: