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Abstract

Many drugs are derived from small molecules produced by microorganisms and plants, so-called natural products. Natural
products have diverse chemical structures, but the biosynthetic pathways producing those compounds are often organized
as biosynthetic gene clusters (BGCs) and follow a highly conserved biosynthetic logic. This allows for the identification of
core biosynthetic enzymes using genome mining strategies that are based on the sequence similarity of the involved
enzymes/genes. However, mining for a variety of BGCs quickly approaches a complexity level where manual analyses are
no longer possible and require the use of automated genome mining pipelines, such as the antiSMASH software. In this
review, we discuss the principles underlying the predictions of antiSMASH and other tools and provide practical advice for
their application. Furthermore, we discuss important caveats such as rule-based BGC detection, sequence and annotation
quality and cluster boundary prediction, which all have to be considered while planning for, performing and analyzing the
results of genome mining studies.
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Introduction

Most antibiotics, such as penicillin, erythromycin or tetracycline,
and also other drugs like acarbose (anti-diabetic), artemisinin
(anti-malarial), tacrolimus or cyclosporins (immunosuppres-
sants) are so-called natural products either synthesized by or
derived from microorganisms or plants [1]. As the biosynthetic
pathways for such compounds are not directly related to growth
and reproduction, these compounds are also referred to as ‘sec-
ondary metabolites’ or—in newer literature—‘specialized

metabolites’. In bacteria and fungi, the genes required for the bio-
synthesis of these compounds are usually organized as biosyn-
thetic gene clusters (BGCs). These clusters contain all genes
required for the biosynthesis of precursors, assembly of the com-
pound scaffold, modification of the compound scaffold (also
referred to as ‘tailoring’) and often also resistance, export and reg-
ulation. This implies that the full pathway can easily be identified
if the involvement of one of the genes in biosynthesis can be
demonstrated. In plants, only some pathways are organized in
BGCs [2]. For other pathways, the biosynthesis genes are
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scattered across the genome and thus require additional experi-
mental data, such as co-expression analyses [3], for
identification.

Soon after the first genes encoding natural product biosyn-
thetic enzymes were identified, sequenced and analyzed, it
became apparent that the sequences of the corresponding
enzymes contain data of highly predictive quality, which can be
used to infer key biosynthetic steps. For example, the core scaf-
folds of the products of canonical modular type I polyketide
synthases (PKSs) can be predicted by combining several types of
easy-to-obtain data: (a) the content and architecture of individ-
ual enzymatic domains within the megaenzymes, which are
responsible for the assembly of the molecular scaffold and its
modifications (e.g. reduction of the b-carbon), can be identified
by using Hidden Markov model (HMM) profiles of such domains;
(b) the individual acyl-CoA building blocks for each PKS module
(e.g. malonyl-CoA versus methylmalonyl-CoA) can be inferred
based on key residues in the active sites of the acyltransferase
(AT) domains or by using phylogenetic classification; (c) the
stereospecificity mediated by ketoreductase domains can be
inferred by key amino acids in the active site motifs. These
studies were the starting point in establishing genome mining
for secondary metabolite BGCs as one of the recent key technol-
ogies in natural products research.

One of the first computational tools to make use of such pre-
dictions was the proprietary DECIPHERsR search engine and data-
base of the former company Ecopia [4] that was first published
in 2003. Around the same time, the first publicly available tools
were released. For example, SEARCHPKS automated the identifi-
cation of enzymatic domains in PKSs [5] (for URLs to this and all
following Web tools, please see Table 1). However, it took until
2009 for the first open-source genome mining pipelines
CLUSEAN [29] and NP.searcher [21] to be published. In 2011, the
first version of the open-source genome mining platform
antiSMASH was released [30], which combined and extended
the functionality of the previous tools and also offered a user-
friendly Web interface. For the first time, it became possible for
scientists without significant experience in computational biol-
ogy to perform larger-scale genome mining studies on a free
and public Web server. Since then, antiSMASH has been steadily
extended [6, 7, 23, 30–33] and currently offers a broad collection
of tools and databases for automated genome mining and com-
parative genomics for a wide variety of different classes of sec-
ondary metabolites. The antiSMASH analysis pipeline for
bacterial genomes and the pipeline for fungal genomes (recently
named ‘fungiSMASH’) are both based on the same codebase.
antiSMASH and fungiSMASH use two different Web submission
forms, each offering specific options. plantiSMASH [23] is a
branch of antiSMASH that includes plant-specific functionality,
such as plant-adapted HMM profiles and cluster detection logic,
as well as support for coexpression analysis.

In addition to antiSMASH, other noteworthy tools have also
been developed and made available: SMURF [28] offers mining
for fungal PKS, nonribosomal peptide synthetase (NRPS) and
terpenoid gene clusters; the PRISM tool [24, 34, 35] offers
genome mining functionality with a strong focus on predicting
chemical structures of the biosynthetic pathways. PRISM is
closely connected to the ‘Genomes-to-Natural Products plat-
form (GNP)’ [14] that matches such predictions with MS/MS
data, and to the GRAPE/GARLIC tools [15, 16], which match the
predictions to chemical databases. For a comprehensive review
describing the history and progress of secondary metabolite
genome mining, along with many examples of compounds and

BGCs that were identified using genome mining approaches,
please see [36].

In this review, we will focus on the general computational
approaches to study secondary metabolite biosynthesis and
how these are integrated into the current antiSMASH frame-
work (Figure 1). Finally, we will give practical advice for prepar-
ing and interpreting genome mining data. Although we focus
on antiSMASH as an example, the issues discussed are applica-
ble to natural product genome mining in general, and hence are
equally relevant when using other tools. Comprehensive
user guides for antiSMASH can be found online (http://docs.anti
smash.secondarymetabolites.org/using_antismash/) and in
[37–39]. For comprehensive reviews on the different genome
mining tools and databases on secondary metabolites, the
reader is referred to [40–43].

Principles of predicting secondary
metabolite biosynthesis

To predict secondary metabolite biosynthesis pathways,
genome mining approaches commonly start out by identifying
conserved biosynthetic genes. Their gene products are subse-
quently analyzed to gain information about their putative func-
tion in biosynthesis and sometimes their substrate specificity.

To identify conserved biosynthetic genes, it is necessary to
have gene annotations available on the genome of interest.
Formats such as NCBI’s GenBank or EBI’s EMBL contain both
DNA sequence and gene annotations. GFF3 files can be used to
carry the annotations for sequences in FASTA format.
antiSMASH accepts input data in all of these formats. If no gene
annotations are available, antiSMASH will run a gene finding
tool. For the bacterial version, this is Prodigal [44]. For fungal
and plant genomes, antiSMASH uses GlimmerHMM [45].

In the next step, BGCs are identified based on core enzymes
involved in the biosynthesis of secondary metabolites.
Functionally related proteins frequently share common
patterns of amino acids. Using profile-based methods like
position-specific scoring matrices to identify these patterns
seems intuitive. HMMs are probabilistic models of linear
sequences that provide an algorithmic approach to interpret the
scores obtained from the scoring matrix. Profile HMMs (pHMMs)
are HMMs designed to represent multiple sequence alignments,
including matches, insertions and deletions. The most com-
monly used tool around pHMMs in biology is HMMer [46]. Many
profile databases such as PFAM [47] and TIGRFAMs [48] provide
downloadable profiles compatible with HMMer. antiSMASH
uses pHMMs with profiles specific to conserved core enzymes of
secondary metabolite biosynthesis pathways to run its profile-
based BGC detection. Once the core enzymes have been identi-
fied, antiSMASH compares co-located core genes with a set of
manually curated BGC cluster rules. These rules comprise
Boolean logic regarding domain presence/absence within either
a gene or a genomic region of interest. For example, BGCs
encoding nonribosomally synthesized peptides (such as the
antibiotic vancomycin) can be unambiguously identified if the
sequence to be analyzed contains genes encoding proteins that
have a combination of one or multiple Condensation,
Adenylation (A) and Peptidyl Carrier Protein domains.
‘Negative’ models are also used to discard false positives, e.g.
protein sequences that achieve higher scores for profiles of fatty
acid synthases (which are homologous to PKSs) than for profiles
of PKSs will not lead to the identification of a polyketide BGC.
The 2017 version of antiSMASH (version 4) [6] uses such rules
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for 45 different types/classes of secondary metabolites (Table
2A). The cluster rules are stored in a tab-delimited text file,
which can be easily edited to add custom types of gene clusters.
Similar rule-based strategies are also used by many other sec-
ondary metabolite genome mining tools, such as PRISM [24],
SMURF [28] and BAGEL [9].

Alternatively, a probabilistic method to detect potential sec-
ondary metabolite BGCs can be selected in antiSMASH that uses
the ClusterFinder algorithm [49]. Rather than using explicit
rules requiring specific enzymes to be present for a particular
class of BGCs, ClusterFinder is based on a model built from a
training set of PFAM domains found in BGCs and non-BGC
regions. Given this model and a genome of interest with anno-
tated PFAM domains, ClusterFinder then calculates the proba-
bility of a stretch of observed PFAM domains to constitute a
BGC. In regions where this probability is higher than the config-
urable threshold, a BGC is predicted.

For BGCs encoding NRPS, PKS, terpene or ribosomally syn-
thesized and posttranslationally modified peptides (RiPPs), it is
possible to perform some additional analyses to predict further
details, such as substrate specificities or product cyclization
patterns. To this end, it is sometimes necessary to classify pro-
teins or domains that share a high overall sequence similarity.
The differences between the functional classes (e.g. different
substrate specificities) are determined by a small number of key
amino acids. Sequence-alignment-based methods such as
BLAST and profile-based methods like HMMer tend to perform

poorly in these cases. As both kinds of methods are designed to
score overall sequence similarities, they—by design—gloss over
the few key differences. In such cases, more complex algo-
rithms can be used. Support vector machines (SVMs) are a
machine learning approach that uses supervised learning to
create nonprobabilistic binary linear classifiers. SVMs classify
data points encoded in multidimensional feature vectors by a
maximum margin hyperplane. Compared with other machine
learning methods such as artificial neural networks, the con-
struction of the SVM hyperplane allows for gaining some insight
over which of the input parameters contribute most to the
solution.

For the multimodular enzymes involved in NRPS biosynthe-
sis, antiSMASH uses the recently published SANDPUMA tool [51]
to predict the substrates of A domains. Knowledge of these sub-
strates and the order of the A domains are then used to predict
the backbone structure of the NRPS product. SANDPUMA inter-
nally uses a combination of pHMMs and SVMs to obtain the best
possible A domain substrate predictions. In RiPP clusters that
encode the biosynthesis of, e.g., lanthi-, lasso-, sacti- and thio-
peptides, identifying the precursor peptide is key to predicting
the cluster product. Here, antiSMASH scores putative precursor
peptides using the recently published RODEO tool [25], as well
as some custom pHMMs. RODEO also uses both pHMMs and
SVMs internally to identify precursor peptides. Tailoring
enzymes that further modify the RiPP are also identified using
pHMMs.

Table 1. URLs of Web servers, Web tools and databases referred to in the review

Tool Functions URL Reference

antiSMASH 4 Genome mining http://antismash.secondarymetabolites.org [6]
BGC analysis
Domain analysis

antiSMASH database BGC database http://antismash-db.secondarymetabolites.org [7]
ARTS Genome mining http://arts.ziemertlab.com [8]
BAGEL 3 Genome mining http://bagel.molgenrug.nl/ [9]
CASSIS BGC boundary prediction https://sbi.hki-jena.de/cassis/cassis.php [10]
CRISPy-web sgRNA design http://crispy.secondarymetabolites.org [11]
eSNaPD v2 Genome mining http://esnapd2.rockefeller.edu [12]
FunGeneClusterS BGC boundary prediction https://fungiminions.shinyapps.io/FunGeneClusterS [13]
fungiSMASH Genome mining http://fungismash.secondarymetabolites.org [6]

BGC analysis
Domain analysis

GNP Metabolomics http://magarveylab.ca/gnp [14]
GRAPE/GARLIC Genome mining https://magarveylab.ca/gast/ [15, 16]
MIBiG BGC database http://mibig.secondarymetabolites.org [17]

reference data set
NaPDoS Genome mining http://napdos.ucsd.edu [18]
NORINE Nonribosomal peptide database http://bioinfo.lifl.fr/NRP [19, 20]
NP.searcher Genome mining http://dna.sherman.lsi.umich.edu/ [21]

Domain analysis
NRPSpredictor Domain analysis http://nrps.informatik.uni-tuebingen.de [22]
plantiSMASH Genome mining http://plantismash.secondarymetabolites.org [23]

BGC analysis
PRISM 3 Genome mining http://magarveylab.ca/prism [24]

BGC analysis
Domain analysis

RODEO Genome mining http://www.ripprodeo.org [25]
RiPP analysis

(SEARCHPKS)/SBSPKS v2 Domain analysis http://202.54.226.228/�pksdb/sbspks_updated/master.html [26]
BGC database

Smiles2Monomers Retro-biosynthetic monomer prediction http://bioinfo.lifl.fr/norine/smiles2monomers.jsp [27]
SMURF Genome mining http://www.jcvi.org/smurf [28]
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Phylogenetic analysis assists with the classification of
enzymes in Clusters of Orthologous Groups and the calculation
of phylogenetic distances of genes/enzyme sequences of inter-
est to characterized reference sequences. Multiple methods
exist to construct phylogenetic trees based on multiple
sequence alignments. Depending on the desired output tree
characteristics, the number of input sequences and other con-
straints, the most appropriate method should be chosen. A pop-
ular algorithm among the distance-matrix-based methods is
the Neighbor-Joining algorithm, which uses bottom-up cluster-
ing to create the tree. Neighbor-Joining is a comparatively fast
method, but the correctness of the tree depends on the accuracy
and additivity of the underlying distance matrix. Maximum par-
simony methods try to identify the tree that uses the smallest
number of evolution events to explain the observed sequence
data. While maximum parsimony algorithms build accurate
trees, their computation tends to be relatively slow compared
with distance matrix-based methods. Maximum likelihood
methods use probability distributions to assess the likelihood of

a given phylogenetic tree according to a substitution model.
This method unfortunately has a high complexity for comput-
ing the optimal tree. Many current tools use a combination of
methods. The popular software FastTree [52] first builds rough
Neighbor-Joining trees and then refines them using a maximum
likelihood scoring of the trees generated in the first pass.

In antiSMASH, phylogenetic methods are used in many pla-
ces. For NRPS clusters, SANDPUMA includes a phylogenetic anal-
ysis in the PrediCAT step. A modified version of PrediCAT trained
on a recently released data set [53] is also used in terpenoid clus-
ters to further classify terpene synthases. Noncore biosynthetic
genes in a BGC are assigned to ‘secondary metabolite clusters of
orthologous groups’, for which phylogenies are reconstructed.

In addition to BGC type-dependent analyses, antiSMASH
also includes general tools providing information on all cluster
types. The built-in ClusterBlast module [30] considers the simi-
larity of individual gene products as well as their genomic
arrangement. ClusterBlast contains a comprehensive database
of all predicted BGCs from publicly available genomes that is

Figure 1. General workflow of an antiSMASH analysis of bacterial, fungal and plant genomes. Computational resources in the left and right boxes have been integrated

with antiSMASH 4 for enhanced genome mining performance, whereas those in the box in the bottom correspond to third-party applications that use antiSMASH for

the detection of BGCs.
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searched to identify organisms containing similar BGCs. The
same algorithm is used in the ‘SubClusterBlast’ module to iden-
tify operons/sets of genes in the query BGC that code for
enzymes involved in the biosynthesis of common precursors,
for example the nonproteinogenic amino acid 3, 5-dihydroxy-
phenylglycine present in some types, or NRPS clusters such as
the vancomycin-family glycopeptides. Finally, this strategy is
also used to search the Minimum Information on Biosynthetic
Gene cluster (MIBiG) [17] data set with the ‘KnownClusterBlast’
function to provide information about related and well-charac-
terized gene clusters. This function can also be used to perform
a sequence-based dereplication, i.e. the identification of gene
clusters that code for already known products.

‘Linked’ tools and resources

A general challenge when using comparative approaches
to study BGCs is the varying quality of annotation in public

Table 2. A: BGC types detectable by pHMM-based rules with
antiSMASH, PRISM and SMURF. B: Rule-independent methods to
detect BGCs

A: Rule-based detection of gene clustersa

BGC-type antiSMASH PRISM/RiPP PRISM SMURF

Aminocoumarins X X
Aminoglycosides/

aminocyclitols
X

Antimetabolites X
Aryl polyenes X X
Autoinducing peptide X
Bacteriocins X
Beta-lactams X X
Bottromycin X X
Butyrolactones X X
ClusterFinder fatty acid X
ClusterFinder saccharide X
ComX X
Cyanobactins X X
Ectoines X X
Furan X X
Fused (pheganomycin-like) X
Glycocin X X
Head-to-tail cyclized peptide X X
Homoserine lactone X X
Indoles X X
Ladderane lipids X X
Lantipeptides class I X X
Lantipeptides class II X X
Lantipeptides class III/IV X X
Lasso peptide X X
Linaridin X X
Linear azol(in)e-containing X X
Melanins X X
Microcin X
Microviridin X X
Nonribosomal peptides X X X
Nucleosides X
Oligosaccharide X
Other (unusual) PKS X
Others X
Phenazine X X
Phosphoglycolipids X X
Phosphonate X X
Polyunsaturated fatty acids X
Prochlorosin X
Proteusin X X
Sactipeptide X X
Non-NRP siderophores X
Streptide X
Terpene X X
Thiopeptides X X
Thioviridamide X
Trans-AT type I PKS X X
Trifolitoxin X
Type I PKS X X X
Type II PKS X X
Type III PKS X X
YM-216391 X

Continued

Table 2. (continued)

B: Rule-independent methods

Method Principle Implement-
ed in

References

ClusterFinder HMM-based
classification
of which
PFAM
domains are
likely to be
found inside
or outside a
BGC

antiSMASH [6, 49]

EvoMining Phylogenomic
identification
of enzymes
with
expanded
substrate
spectrum;
such
enzymes are
often found
in BGCs

EvoMining [50]

Resistance gene-based
mining

Identification
of potential
antibiotic
resistance
genes; often
such genes
are part of
BGCs to pro-
vide self-pro-
tection of the
producing
organism

ARTS [8]

aFor details on the pHMM’s and specific rules used by the different genome min-

ing programs, please consult the original publications of antiSMASH [6, 32],

PRISM [24, 34] or SMURF [28].
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sequence databases. Some BGCs that have been extensively
studied experimentally are well annotated, whereas others—
mostly identified in high-throughput sequencing efforts—were
only annotated using standard genome annotation pipelines
that do not provide specific annotations of secondary metabo-
lite BGCs. Therefore, a community effort has been established
to define a ‘MIBiG’ standard [17] and provide a standardized
repository for BGCs that have been experimentally connected to
their biosynthetic products. The MIBiG repository currently (as
of April 2017) contains 1396 entries of BGCs that are validated to
code for a specific biosynthetic pathway. Within this set, 396 of
the entries contain comprehensive manually curated annota-
tions of the specific features of the gene clusters, which were
provided by the specialists that studied these respective BGCs.
This collection now serves as a reference data set for a wide
variety of applications and the validation of novel computa-
tional tools.

In addition to analyses integrated into antiSMASH, the anno-
tation generated by antiSMASH can also be useful as a starting
point for further downstream analyses. Therefore, antiSMASH 4
provides an application programming interface that allows
third-party software to access antiSMASH annotation for fur-
ther processing. Examples of such tools are the ‘Antibiotic
Resistant Target Seeker ARTS’ [8], which predicts potential tar-
gets of antibiotics and uses the annotation provided by
antiSMASH to mine for BGCs and CRISpy-web [11], a Web tool
that allows user-friendly design of single guide RNAs (sgRNAs)
for CRISPR applications on nonmodel organisms.

antiSMASH is a comprehensive genome mining platform, but
only provides information on individually submitted genomes
and does not offer any integrated search functionality. Therefore,
in 2016, the antiSMASH platform was extended with a database
containing precomputed antiSMASH annotation on >3900 fin-
ished high-quality bacterial genome sequences [7]. Using the
Web interface, it is possible to browse secondary metabolite clus-
ters by BGC type or taxonomy of the producer organism.
Additionally, custom queries can be constructed using an inter-
active query builder. This makes it possible to answer research
questions such as ‘which clusters of type NRPS contain
A domains that select for the nonproteinogenic amino acid
3, 5-dihydroxy-phenylglycine?’ or ‘what BGCs of type RiPP exist
in the genus Streptomyces that are not lanthipeptides?’. The
results are displayed in the same antiSMASH Web format. They
can also be exported in various file formats that allow further
processing in other bioinformatics tools.

Considerations and caveats for computational
genome mining
You can only find what you are looking for. . .

Most genome mining platforms, including antiSMASH (with
default search options), SMURF [28] and PRISM [24, 34], use a
rule-based approach to define what is annotated as a secondary
metabolite BGC. These rules are derived from existing knowl-
edge about key biosynthetic steps/principles, which require the
activity of individual or combinations of specific enzymes. The
genes encoding these are also often referred to as ‘core’ genes
and used as anchors or probes to screen the genomic data of
interest. While this method is highly sensitive and precise for
identifying biosynthesis genes for many classes of secondary
metabolites, such as polyketides, or nonribosomally synthe-
sized peptides, it of course implies that only pathways for which

rules are implemented in the mining software can be detected;
all pathways that may use unknown or unrelated alternative
enzymes will be missed.

As an extension to the rule-based genome mining,
antiSMASH optionally provides the possibility to use the
‘ClusterFinder’ method [49]. This algorithm can identify BGCs
that are not detected by the expert-generated rule sets
described above. However, it should be noted that this method
still has some bias, as the source data used to train the HMM
determining whether a gene product likely belongs to a BGC are
also based on the currently known pathways.

To address these limitations, alternative methods are under
development to access the ‘biosynthetic dark matter’ and iden-
tify novel pathways and enzymes. One promising approach is
‘EvoMining’ [50], which is based on the observation that biosyn-
thetic enzymes and/or resistance genes often evolved by dupli-
cation and divergence of primary metabolism enzymes. By
detecting divergences in phylogenetic trees of enzymes from
the core metabolism shared between many bacterial species,
this method can identify enzymes that have likely been repur-
posed for secondary metabolite biosynthesis [50] or resistance
[8]. Once novel pathways have been identified using such meth-
ods and experimentally validated, the newly obtained knowl-
edge on the involved enzymes is of course used to refine and
extend the rule-based mining methods.

The quality of input data is important for getting
reliable results

One important aspect to be considered when mining genomic
data for BGCs using antiSMASH or alternative pipelines, such as
PRISM [24, 34], SMURF [28] and ClusterFinder [49], is the quality
of the sequence data that is to be analyzed. All these tools use
either rule-based or statistical approaches to identify the BGCs
involved in secondary metabolism. Both methods require that
the sequence data to be analyzed are not too fragmented and
that the genes of a BGC are not scattered across different contigs
in the assembly. Users should be particularly aware of potential
quality issues when analyzing genome data generated with
short-read sequencing technologies. Special care has to be taken
when analyzing type I polyketide or NRPS-containing BGCs;
both types of pathways involve large multimodular mega-
enzymes, whose gene sequences often are highly repetitive and
therefore difficult to assemble purely based on short sequencing
reads [54]. The same applies to metagenomic data; reliable iden-
tification of BGCs—which consist of several genes—is only pos-
sible on well-assembled data. Therefore, analyses on the public
antiSMASH Web server are limited to sequences of over 1 kb
length and the first 1000 contigs. Both limits can be deactivated
in the stand-alone version of antiSMASH. To analyze highly
fragmented short-read-based assemblies, pipelines focusing on
the detection and analysis of individual core domains, such as
NaPDos [18] or eSNaPD [12], should be considered. In general,
phylogenomics-based approaches like the abovementioned or
as used in EvoMining [50] are excellent alternatives for such
fragmented data, as they base their predictions on single
enzymes/genes instead of requiring the presence of complete or
partial BGCs [55]. Therefore, we recommend first using these
tools to identify ‘interesting’ sequence records in such bulk DNA
data and then submitting only these records (provided they
have the required sequence length) for an analysis with
antiSMASH.
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In addition, most algorithms predicting enzyme specificities
rely on automatically generated alignments of the user-
supplied input data with experimentally characterized ‘refer-
ence’ sequences to identify residues of the active sites or the
substrate-binding pockets. Depending on the tool used to pre-
dict specificities, these alignments are generated using standard
multiple sequence alignment software like ClustalW [56] or
Muscle [57]. Alternatively, BLAST or HMMer are used to match
the query with a custom reference database. Consequently,
these tools are sensitive to sequencing errors if these errors
occur in or near the active sites or binding pockets. In addition,
the accuracy of such computer-generated, nonrefined align-
ments may suffer if the protein sequence of interest is too dis-
similar to the reference data sets. In both cases, this can easily
lead to incorrect specificity predictions.

In the case where users analyze annotated sequence data,
which is uploaded as GenBank files or directly retrieved from
the NCBI GenBank or RefSeq database, antiSMASH will only
consider the annotated genes and not perform additional gene
finding. This also implies that genes annotated as
‘pseudogenes’ are not considered for any prediction. This is
noteworthy, as many modular PKS and NRPS gene calls that
were generated with the NCBI PGAP [58] pipeline (which is used
to annotate all microbial genomes in RefSeq [59]) were inaccu-
rate and the intact genes were labelled as pseudogenes. This
bug has been fixed for RefSeq 82, but users that downloaded
earlier versions of RefSeq entries should be cautious. Many
GenBank records that were annotated with affected versions of
PGAP also suffer from this issue.

If users supply unannotated sequence data, antiSMASH uses
the software prodigal [44] for bacterial genomes or GlimmerHMM
[45] for fungal and plant sequences to automatically identify cod-
ing regions. The downstream genome analyses therefore depend
on the accuracy of the automated gene finding, which can vary
between different organisms and is also dependent on the
sequence quality. If users supply annotated sequence data by
uploading GenBank-formatted or FASTAþGFF3 files, antiSMASH
uses these gene coordinates. If an annotated and high-quality
genome sequence of an organism of interest is available, it is
therefore advisable to use the preannotated data.

Defining the extent of a secondary metabolite BGC

Predicting the boundaries of a BGC solely based on genomic data
still remains challenging. For fungal BGCs, conserved binding
sites of cluster-specific transcriptional regulators are good indica-
tors to use in defining which genes are co-regulated. If the same
regulator binding site is present near the core-genes of a cluster,
they probably belong to the same biosynthetic pathway. This
approach is used in the CASSIS tool [10], which was recently inte-
grated into version 4 of antiSMASH [6]. In addition, fungal tran-
scriptomics data can also be used to efficiently define the cluster
boundaries [60], as implemented in the FunGeneClusterS applica-
tion [13].

For bacterial sequences, such automated or semi-automated
methods are unfortunately not (yet) well established. The pres-
ence or absence of BGCs is often strain specific [61, 62].
Comparing genomes between closely related species to identify
which genes are highly conserved between these species and
which are unique to the strain of interest can indicate the extent
of BGCs. In antiSMASH, we have therefore chosen an ‘inclusive’
approach. Genes that are encoded within an empirically defined
distance from conserved core genes of a BGC are displayed as a

cluster. The distances were selected in a way that we would
rather overpredict the distance, i.e. include genes in the gene
cluster annotation that may belong to the gene cluster border
region, than exclude genes that are part of the BGCs but are
encoded outside this range from the core biosynthetic genes.

Strategies to connect gene clusters to molecules

In the end, most users turn to antiSMASH or related tools to
accomplish one of two goals: (1) to identify potentially new mol-
ecules that could be synthesized by the organism of study based
on its genome, or (2) to identify genes involved in the biosynthe-
sis of an already observed molecule. Specific strategies are
available for each of these scenarios.

When trying to find out what kind of specialized metabolites
an organism can produce based on its genome, the starting
point is to go over each gene cluster in the genome in detail.
First, comparisons with BGCs from MIBiG (in antiSMASH, this is
done using the KnownClusterBlast module) will identify BGCs
that are either closely or more distantly related to these refer-
ence clusters. To determine whether a BGC is likely to produce
the exact same molecule, manual inspection is required. It
should be checked that all key biosynthetic genes of the refer-
ence cluster are also found in the BGC of interest by studying
the data of the MIBiG entry and related literature. If so, are any
additional enzymes encoded in the BGC of interest that could
encode chemical modifications not observed for the known
molecule? If the BGC encodes PKSs or NRPSs, do the domain
architectures and their corresponding predicted substrate spe-
cificities match to those of the known cluster? The answers to
these questions will determine whether the BGC of interest is
likely to encode the biosynthesis of: (a) the same molecule (all
relevant genes ‘shared’ with high percent identity, and perfect
alignment of chemistry predictions with the structure of the
known molecule); (b) a potentially new variant of a known mol-
ecule (some enzyme-coding genes are cluster-specific, and/or
some substrate specificities are different); (c) a new molecule
within a known class of molecules (only a minority or small
majority of the genes ‘shared’); or (d) an altogether unknown
molecule (no significant similarities). Before it can be concluded
that a molecule is unknown, it should be taken into account
that some known natural products lack a described BGC; hence,
some novel-looking BGCs may still encode the production of
molecules for which the chemistry has been long known. For
polyketides and nonribosomal peptides, these cases can be
assessed with a retro-biosynthetic approach using tools like
Smiles2Monomers [27] or GRAPE [15]. These tools predict the
potential monomers of a given compound structure, for exam-
ple derived from a compound database. In a second step, these
compounds can be connected to BGCs by mapping the mono-
mer predictions derived from the chemical structure to the
monomer predictions derived from the analysis of BGCs. The
latter predictions can be made using the antiSMASH database
or tools like GARLIC [15]. For nonribosomal peptides, another
option is to check for compounds with similar monomers in the
NORINE database [19, 20]. antiSMASH provides the appropriate
search links from the ‘detailed annotations’ sidebar. If no
cluster-wide similarity is observed, it is in any case still a good
idea to look for similarities to known clusters at a smaller scale:
either per gene or per subcluster. antiSMASH offers functional-
ities to identify such similarities, using the SubClusterBlast fea-
ture and the gene-specific BLAST search of MIBiG [17]. This
makes it possible to predict the presence of specific chemical
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moieties or chemical modifications to the molecule, which
helps to prioritize the targets or to connect the gene cluster to a
molecule observed in metabolomic data. Finally, looking for
functional markers can greatly help in prioritizing BGCs, e.g.
when the aim of the project is antibiotic discovery, one can look
for both general and specific types of antibiotic resistance genes
that are often encoded inside a BGC to provide natural self-
resistance to the producer [8, 16].

Sometimes, the structure of a molecule has already been
elucidated before a genome is sequenced or studied. In such a
case, the aim of using antiSMASH or related tools is usually to
identify the biosynthetic mechanism of the molecule of inter-
est. If, chemically, the molecule is closely related to other
known natural products for which the biosynthesis is known,
one would usually be able to find either a single BGC or only a
few BGCs with high similarity to the corresponding MIBiG refer-
ence cluster. However, this is often not the case. Then, the best
strategy is to use ‘exclusion logic’ and step-by-step exclude
BGCs that are unlikely to be involved in the biosynthesis of the
molecule, thus gradually narrowing down the options to only
one or a few gene clusters. First, one would ask: What is the
chemical class of the molecule, and, accordingly, what is its
expected biosynthetic class? For some chemical classes, there
can be multiple biosynthetic options, e.g. peptides can be made
in either a ribosomal or nonribosomal fashion. Second, one
would ask: What can we specifically predict about the biosyn-
thetic pathway? If it concerns a potential nonribosomal peptide
or polyketide, knowledge of the structure would allow predict-
ing the number of modules expected in corresponding NRPSs or
PKSs, as well as their substrate specificities. Third, is there spe-
cific chemistry seen in the molecule for which enzymatic mech-
anisms are known? If, for example, a peptide is acylated, one
could expect the presence of either a CoA-ligase or a
Condensation-starter domain in the BGC. Fourth, are any other
organisms known to produce this molecule? If so, one could see
which BGCs have homologous clusters in each of these known
producers.

When dealing with larger numbers of genomes, the above-
mentioned strategies may no longer be feasible. In this case, a
targeted search could be done using software like clusterTools
[63] or MultiGeneBlast [64] among the entire set of BGCs identi-
fied in all genomes. For example, if the presence of a certain
(combination of) specific gene(s) is either desired (in case of
hunting for new molecules) or expected (in case of trying to con-
nect a known molecule to its BGC), a specific query can be built
to search for this.

Perspectives

With the recent progress in sequencing technologies and the
availability of easy-to-use software programs, genome mining
for BGCs and evaluating the genetic potential of secondary
metabolite producing organisms have matured into an impor-
tant technology. It complements the classical organic
chemistry-centered approach to find, dereplicate and character-
ize novel bioactive secondary metabolites, and contributes
toward the current paradigm-shift that brings natural products
once more into focus for future drug discovery [36]. In addition,
it also can be used as an effective method to evaluate the safety
of biotechnological production organisms, which are used
directly in food production or for the production of enzymes or
other biochemicals. In this case, genome mining data can be
used to demonstrate that a production strain does not contain

BGCs coding for the biosynthesis of known hazardous
chemicals.

Increasingly available high-quality genome data, in combi-
nation with databases of BGCs of known function, such as
sequence data from the MIBiG repository [17], can also be used
for dereplication of known or closely related compounds and
the identification of unexplored or underexplored gene cluster
families. So far, several studies [35, 49, 65–67] have successfully
used such approaches to identify novel natural products. In
connection with large-scale metabolomics approaches (in
which gene cluster data are automatically correlated with infor-
mation on known or unknown compounds identified by
mass spectrometry [14, 15, 67, 68]), these high-quality data now
allow for new high-throughput methods to identify novel
compounds.

Many of the current limitations of automated genome min-
ing approaches are being actively addressed by the interna-
tional natural product community. The EvoMining strategy has
been successfully used [50] to identify new BGCs coding for pre-
viously unknown compounds and enzymes. Another promising
approach to better predict BGC boundaries is based on compara-
tive genomics by detecting ‘breaks’ in the conserved synteny of
related strains; as such breaks are often caused by the insertion
and/or horizontal acquisition of BGCs, this approach allows the
identification of potential secondary metabolite biosynthetic
pathways without relying on previous knowledge of the
enzymes involved (SYNTERUPTOR, S. Lautru and J. L. Pernodet;
personal communication). Thousands of BGCs already have
been identified and the number is still steadily increasing. Tools
like CORASON (F. Barona-Gómez, personal communication;
https://github.com/nselem/EvoDivMet; as used in [69, 70]),
clusterTools [63] and MultiGeneBlast [64] can be used to identify
clusters, which share varying degrees of similarity with known
BGCs. Large-scale clustering of these BGCs is emerging as an
important method to compare, classify into gene cluster fami-
lies, dereplicate and identify novel or—depending on the aim of
the study—related BGCs [49, 66, 67]. Novel software packages
like BIG-SCAPE (Medema, personal communication; https://git.
wageningenur.nl/medema-group/BiG-SCAPE) will help scien-
tists to perform such analyses.

Of course, the widespread use of genome mining approaches
also raises new challenges. One major bottleneck in such
approaches is the frequent observation that the BGCs remain
unexpressed (i.e. ‘silent’) in the producer strains under normal
laboratory fermentation conditions; in such cases, the com-
pounds cannot be detected or isolated despite the genome con-
taining all the genes required for the biosynthesis. Thus,
strategies have to be developed and improved to trigger the
expression of such silent BGCs [71, 72]. One important step for-
ward in this regard has been the development of CRISPR-based
genome editing tools for important groups of bacterial and fun-
gal secondary metabolite producers [11, 73–75] that can be used
to insert promoters to activate the silent BGCs [76] or to ‘repair’
biosynthetic genes [77]. Successful expression of the BGC and
isolation of a novel compound should be followed by metabolo-
mics analysis and metabolic engineering that are intercon-
nected with each other. Metabolomics helps with identifying
secondary metabolite precursors, and hence provides clues on
the use of metabolic pathways. This information in turn facili-
tates metabolic engineering of the host strain that considers
quantitatively optimal production of a target secondary metab-
olite [78].
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Key Points

• Despite the huge chemical diversity of bioactive secon-
dary metabolites, the enzymes involved in their biosyn-
thesis are often strikingly conserved.

• The sequence conservation of these enzymes can be
exploited by genome mining approaches to identify sec-
ondary metabolite BGCs in genome data.

• Genome mining is a powerful method to access the
genetic potential of secondary metabolite producers.

• User-friendly pipelines (e.g. antiSMASH) are available to
assist scientists in genome mining.

• There are caveats that should be considered when
designing and interpreting genome mining studies.
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