General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Genome-wide identification of tolerance mechanisms towards p-coumaric acid in Pseudomonas putida

Calero, Patricia; Jensen, Sheila I.; Bojanovi, Klara; Lennen, Rebecca; Koza, Anna; Nielsen, Alex Toftgaard

Published in:
Biotechnology and Bioengineering

Link to article, DOI:
10.1002/bit.26495

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Genome-wide identification of tolerance mechanisms towards p-coumaric acid in

Pseudomonas putida

RUNNING TITLE: Genome-wide tolerance mechanisms in *P. putida*

AUTHORS: Patricia Calero, Sheila I. Jensen, Klara Bojanovič, Rebecca Lennen, Anna Koza, Alex T. Nielsen

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark

Corresponding author: Alex T. Nielsen: atn@biosustain.dtu.dk

†This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: [10.1002/bit.26495]

Additional Supporting Information may be found in the online version of this article.

This article is protected by copyright. All rights reserved

Received April 21, 2017; Revision Received October 16, 2017; Accepted November 8, 2017

This article is protected by copyright. All rights reserved
ABSTRACT

The soil bacterium *Pseudomonas putida* KT2440 has gained increasing biotechnological interest due to its ability to tolerate different types of stress. Here, the tolerance of *P. putida* KT2440 towards eleven toxic chemical compounds was investigated. *P. putida* was found to be significantly more tolerant towards three of the eleven compounds when compared to *Escherichia coli*. Increased tolerance was for example found towards *p*-coumaric acid, an interesting precursor for polymerization with a significant industrial relevance. The tolerance mechanism was therefore investigated using the genome-wide approach, Tn-seq. Libraries containing a large number of miniTn5-Km transposon insertion mutants were grown in the presence and absence of *p*-coumaric acid, and the enrichment or depletion of mutants was quantified by high-throughput sequencing. Several genes, including the ABC transporter Ttg2ABC and the cytochrome *c* maturation system (*ccm*), were identified to play an important role in the tolerance towards *p*-coumaric acid of this bacterium. Most of the identified genes were involved in membrane stability, suggesting that tolerance towards *p*-coumaric acid is related to transport and membrane integrity. This article is protected by copyright. All rights reserved

KEYWORDS

Pseudomonas putida, Tn-seq, *p*-coumaric acid, tolerance.
INTRODUCTION

Pseudomonas putida is one of the soil organisms that is gaining interest due to its natural resistance to a number of hydrophobic solvents, such as xylenes, toluene or styrene (Cruden et al., 1992; Inoue et al., 1991; Weber et al., 1993). Some of the mechanisms leading to increased tolerance in these solvent-tolerant strains have been identified and described, and efflux pumps (Kieboom and de Bont, 2001; Mosqueda and Ramos, 2000; Ramos et al., 1998) as well as changes in the membrane composition (Heipieper and De Bont, 1994), have been shown to be important for tolerance in these strains. Some of the changes that can occur in the membrane, when bacteria are exposed to hydrophobic solvents, include vesicle formation, alteration of phospholipid composition, and reduced permeability of the cell membrane (Heipieper and De Bont, 1994; Nicolaou et al., 2010; Ramos et al., 2002). The mechanisms behind tolerance in the model strain *P. putida* KT2440 has also been studied for different compounds (Santos et al., 2004; Benndorf et al., 2006; Fernandez et al., 2012b; Domínguez-Cuevas et al., 2006; Fernandez et al., 2012a; Roca et al., 2008).

Traditionally, transposon insertion mutagenesis has been used to identify gene functions in many different bacteria (Glass et al., 2006; Hensel et al., 1995; Jacobs et al., 2003; Mack et al., 1994), including *P. putida* KT2440 (Herrero et al., 1990; de Lorenzo and Timmis, 1994; Molina-Henares et al., 2010). However, genome wide screening and identification of all genes involved in tolerance has been a limiting factor, which in the last years have been overcome through the use of next generation sequencing (NGS) techniques. Transposon insertion sequencing (Tn-seq) (Fig. 1A), enables high-throughput identification of genomic regions involved in the survival of cells when exposed to various conditions (Barquist et al., 2013; van Opijnen and Camilli, 2013). A number of organisms have been investigated using this technique, thereby successfully identifying genes important for growth under different stress conditions, essentially by simultaneously investigating the fitness of all single mutants.
(Gawronski et al., 2009; Langridge et al., 2009; Lennen and Herrgård, 2014; Santiago et al., 2015). So far, a Tn-seq method has however not been developed for \textit{P. putida}.

Metabolic engineering of microorganisms for production of chemical compounds from renewable resources aims at providing an alternative to petroleum-based chemical processes. However, it still faces some challenges, such as ameliorating the toxic effects of intermediates and products of interest (Keasling, 2010). Numerous studies have focused on increasing the tolerance of different production strains towards various biochemicals using different strategies (Alper et al., 2006; Atsumi et al., 2010; Dunlop et al., 2011; Goodarzi et al., 2010). An alternative to this approach is to identify alternative production hosts that are naturally tolerant to higher concentrations of the chemicals of interest. \textit{P. putida} is one such strain that is often utilized for bioremediation and production of more toxic chemicals (Loeschcke and Thies, 2015; Nikel et al., 2014; Poblete-Castro et al., 2012; Verhoef et al., 2007; Verhoef et al., 2009).

In this study, we have investigated the tolerance of \textit{P. putida} KT2440 towards a range of different biochemicals and found that it exhibits significantly increased tolerance towards the aromatic organic compound \textit{p}-coumaric acid, a low molecular weight phenolic acid present in soils and plants (Mussatto et al., 2007; Strobel, 2001). \textit{p}-Coumaric acid is released as an inhibitory by-product during the pretreatment of the lignocellulosic feedstocks (Jönsson and Martín, 2016). There is furthermore significant industrial interest in producing \textit{p}-coumaric acid since it can be used for making high performance polymers. Additionally, it is a precursor for a number of interesting high value compounds (Santos et al., 2011).

To study the mechanism of tolerance towards \textit{p}-coumaric acid, we developed a novel method for generating random transposon insertion mutant libraries in \textit{P. putida} KT2440. In combination with transposon insertion sequencing, the most important genes required for growth in the presence of \textit{p}-coumaric acid were identified. A number of genes involved in
maintenance of the membrane structure and efflux of solvent compounds were found to be important for growth, when *P. putida* KT2440 was exposed to this compound.

EXPERIMENTAL PROCEDURES

Bacterial strains and chemicals

P. putida KT2440 (DSM-6125) and *P. putida* KT2440 Δfcs (Calero et al., 2016) were grown at 30 °C and *E. coli* K-12 MG1655 was grown at 37 °C. Cells were routinely cultured in LB medium or on LB agar plates according to standard protocols (Sambrook and Russel, D, 2000). Modified M9 minimal medium containing 5 g L⁻¹ of glucose as carbon source (Abril et al., 1989) was used for all assays. *E. coli* DH5α and *E. coli* DH5α-Pir were used for plasmid maintenance and were grown in LB medium at 37 °C.

Antibiotics and other supplements were used at the following concentrations: chloramphenicol (Cm) 30 μg mL⁻¹, kanamycin (Km) 50 μg mL⁻¹, and gentamicin (Gm) 10 μg mL⁻¹. 300 mM sucrose was used for preparing electrocompetent *P. putida* cells. The chemicals used for toxicity screening included sodium acetate (Sigma, S8750), *n*-butanol (Sigma, 281549), 3-hydroxy-γ-butyrolactone (TCI Chemicals, H0939), 1,4-butanediol (Merck, 801534), furfural (Sigma, 185914), itaconic acid (Sigma, I29204), levulinic acid (Sigma, L2009), succinic acid (Sigma, S9512), L-threonine (Sigma, T8441), *p*-coumaric acid (TCI Chemicals C0393), and octanoic acid (O3907). Stocks of these chemicals were prepared in modified minimal medium, and neutralized with NaOH to pH 7 when acidic chemicals were used.

Plasmids and strains constructions

P. putida KT2440::miniTn7-Gm:GFP and *P. putida* KT2440 Δfcs::miniTn7-Gm:GFP (Table I) were constructed by transformation of plasmid pBK-miniTn7-gfp2 (Koch et al., 2001) as previously described (Choi et al., 2006), using plasmid pTNS2 (Choi et al., 2005) as a helper.
The correct integration of the transposon was checked by colony PCR using primers Tn7-GlmS and Tn7R109 (Table II).

Mutants in genes *ttg2A*, *ttg2B*, *ccmC*, and *ccmF* were obtained from the Pseudomonas Reference Culture Collection (PRCC), consisting of insertion mutants generated by disruption of the genes using a miniTn5-Km (Duque et al., 2007).

Mutants in genes *vacJ*, *tyrB*, and *fleN* were constructed by introducing, by homologous recombination, a 3 kb fragment of DNA with a kanamycin resistance gene for its selection. For this purpose, plasmids pEMG-vacJ, pEMG-tyrB and pEMG-fleN were constructed by cloning a 500 bp homologous fragment of the gene to be disrupted, using USER-cloning (Nour-Eldin et al., 2010). The correct plasmids, which were checked by colony PCR and sequencing, were electroporated into *P. putida* KT2440 strains and the resistance to kanamycin was selected. The correct insertion was checked by PCR.

Chemical tolerance assays

Overnight cultures of *P. putida* KT2440 were diluted 20-fold in 10 mL of modified M9 minimal medium. Cells were grown in 96-well microtiter plates (flat bottom, Greiner Bio-one) at 30 °C and 200 rpm in an ELx808 microtiter plate reader (BioTek). After three hours of incubation, the cultures had reached an OD₆₃₀ of approximately 0.1, and the stressors were added at different concentrations. Cells exposed to the different chemicals at various concentrations were incubated in a microtiter plate reader for 24 hours, and growth was followed by measuring OD₆₃₀ every 30 minutes. The concentrations used for each compound were: 0, 2.25, 9, 22.5, and 45 g L⁻¹ of threonine; 0, 8, 20, 30, and 40 g L⁻¹ of itaconic acid; 0, 7.3, 18.18, 27.27, and 36.36 g L⁻¹ of succinic acid; 0, 0.25, 0.5, 2.5, and 5 % (v/v) of 3-hydroxy-butyrolactone; 0, 5, 10, 50, and 100 g L⁻¹ of sodium acetate; 0, 0.1, 0.5, 2.5, and 5 % (v/v) of levulinic acid; 0, 0.075, 0.15, 0.75, and 1.5 % (v/v) of furfural; 0, 0.25, 0.5, 2.5, and 5
% (v/v) of 1,4-butanediol; 0, 5, 10, 50, and 100 g L⁻¹ of butanol; and 0, 15, 30, and 60 mM of
p-coumaric acid.

Due to absorbance interference of the compound in the readings in 96-well microtiter plates,
octanoic acid toxicity assays in P. putida KT2440 and E. coli K-12 MG1655 were performed
in 50 mL of modified M9 minimal medium in 250 mL shake flasks at 30 °C and 37 °C,
respectively, and 250 rpm of shaking. Overnight cultures grown in modified M9 minimal
medium were diluted to obtain an initial OD₆₀₀ of 0.1 and incubated until OD₆₀₀ reached 0.5,
after which octanoic acid was added to the culture. The concentrations used were 0, 30, 40,
60, and 100 mM. Growth was followed by measuring OD₆₀₀ every hour for five hours.

p-Coumaric acid tolerance in strains P. putida KT2440 and P. putida KT2440 Δfes, ttg2A⁻,
ttg2B⁻, ccmC⁻, ccmF⁻, vacJ⁻, tyrB⁻, or fleN⁻, as well as in E. coli K-12 MG1655 was tested
following the same protocol described above using 0, 15, and 30 mM of p-coumaric acid.

Generation of miniTn5 insertions libraries

Introduction of plasmid pUT-Km into P. putida KT2440::miniTn7-Gm and P. putida
KT2440 Δfes::miniTn7-Gm was performed by triparental mating. 20 mL of overnight LB
pre-cultures of the recipient strains, the donor strain containing pUT-Km, and the strain
containing the helper plasmid pRK600, were harvested and washed twice in a phosphate
buffer, after which they were mixed in a 1:1:1 ratio and adjusted to a volume of 1 mL in
phosphate buffer. A volume of 100 μL was placed on an autoclaved 0.45 μm filter (Durapore
membrane filters, Merck Millipore), using a total of 10 filters, and incubated overnight at 30
°C on LB plates. Subsequently, cells on all filters were re-suspended in 8 mL of buffer. 100
μL of this mix was diluted and plated on LB agar plates containing kanamycin and
gentamycin for counting the number of mutants in the library, and the rest was used to
inoculate 400 mL of LB with kanamycin and gentamycin in a 2 L shake flask, which was
incubated at 30 °C with 250 rpm shaking overnight. Aliquots of this culture were used to prepare cryo stocks in glycerol and stored at -80 °C.

Transposon mutant library growth selection

Tn5 mutant libraries of *P. putida* KT2440::miniTn7-Gm and *P. putida* KT2440 Δfcs::miniTn7-Gm were used for growth selection under *p*-coumaric acid stress conditions. The cryo stocks, containing approximately 100,000 mutants, determined by colony counting on agar plates, were thawed on ice, washed twice with LB and grown overnight in 50 mL of LB with proper antibiotics at 30 °C in 250 mL shake flasks. 10 mL of the overnight LB culture was harvested for genomic DNA extraction. Part of the overnight LB culture was used to inoculate 50 mL of modified M9 minimal medium with antibiotics to a starting OD$_{600}$ of 0.1 after washing the cells with modified M9 minimal medium. Cells were incubated at 30 °C and 250 rpm and growth was followed by measuring OD$_{600}$ every two hours. When cultures reached an OD$_{600}$ of 0.5, they were divided into 25 mL cultures and diluted two fold in preheated minimal medium or in minimal medium with 50 mM of *p*-coumaric acid. Growth was followed until cultures reached late exponential phase at an OD$_{600}$ of approximately 2, after which the cells were harvested and stored at -20 °C prior to gDNA extraction. Three independent biological replicates were carried out.

Library preparation for Tn-seq

gDNA libraries were prepared as previously described (Lennen and Herrgård, 2014). *P. putida* gDNA was extracted using the PureLink genomic DNA kit (Life Technologies) and 3 μg of total gDNA was sheared in 300-bp fragment size using a Covaris E220 ultrasonicator. End repair (NEBNext End repair module, New England Biolabs) and A-tailing using Klenow Fragment (Thermo Scientific) was performed on the fragments prior to ligation of adapters. Illumina TruSeq adapters were ligated using the NEBNext Quick Ligation Module (New England Biolab) and the transposon-chromosome junctions were amplified by PCR with a
primer specific for the adapter and a biotinylated primer specific for the miniTn5 inserts. Biotinylated PCR products were subsequently purified by affinity capture using the Dynal MyOne Streptavidin C1 beads (Invitrogen). Library size distribution was validated by qPCR, using the KAPA qPCR quantification kit, the Agilent RNA 6000 Pico kit, and the Agilent 2100 Bioanalyzer. Finally, the library was sequenced on an Illumina MiSeq.

Data analysis
Reads obtained from sequencing were initially processed in order to discard the unspecific sequences and trim the length of the correct ones to 120 bp, leaving 25 bp of genomic sequence that can be used for comparison to the P. putida KT2440 genome. Genes that were conditionally more abundant were identified using the ESSENTIALS pipeline (Zomer et al., 2012). Gene-level insertion counts were normalized using TMM normalization and p-values adjusted by Benjamini-Hochberg correction. Genbank version NC_002947.3 of P. putida KT2440 was used as the reference genome.

RESULTS
Tolerance of P. putida KT2440 towards industrially relevant biochemicals
P. putida has been widely used for bioremediation because of its high degree of tolerance towards many organic compounds, and it is furthermore a promising host for metabolic engineering. We therefore decided to screen P. putida KT2440 for its tolerance towards a number of chemical compounds that could be relevant for biobased production, and that are known to be relatively toxic to E. coli (Rau et al., 2016). Six of the compounds, hydroxy-γ-butyrolactone, furfural, itaconic acid, levulinic acid, succinic acid, and L-threonine, have previously been identified as being among the top 30 predicted chemical building blocks in a report from the U.S Department of Energy (Werpy, T. and Petersen, 2004). Five other compounds were also selected, including acetic acid, which is a common inhibitor present in biomass hydrolysates; n-butanol, a potential biofuel and also widely used in the chemical
industry; octanoic acid and 1,4-butanediol, which are polyester precursors; and \(p \)-coumaric acid, an aromatic polymer precursor, for which there is currently no efficient industrial production method.

P. putida KT2440 tolerance to these chemical compounds was tested by assaying their effect on the growth rate using different concentrations, using conditions identical to those used previously for *E. coli* K-12 MG1655 (Rau et al., 2016). In order to compare the effect the different compounds have on *P. putida* KT2440 and *E. coli* K-12 MG1655 growth, we calculated the concentration of each compound required to reduce the growth rate by 33%, as described previously (Rau et al., 2016). The concentrations of compounds needed to reduce the growth rate in *P. putida* KT2440 varied significantly. Some of the chemicals were found to effect growth at very low concentrations, including furfural, which was found to be toxic at a concentration of approximately 15 mM; levulinic acid and \(n \)-butanol at 40 mM; and hydroxy-\(\gamma \)-butyrolactone at 58 mM (Table III). Others were found to require higher concentrations to achieve the same effect on the growth, such as threonine or 1,4-butanediol, for which concentrations of 412 mM and 399 mM were required, respectively.

When comparing to *E. coli* K-12 MG1655, most of the chemical compounds tested were found to have a similar or even higher inhibitory effect on *P. putida* KT2440 in the conditions used. However, higher tolerance towards L-threonine, octanoic acid, \(p \)-coumaric acid, and furfural was found in *P. putida* KT2440. The highest difference in tolerance was found for L-threonine, where *P. putida* KT2440 was found to be seven fold more tolerant when compared to *E. coli* K-12 MG1655. *P. putida* KT2440 was also found to be two fold more tolerant to octanoic acid and \(p \)-coumaric acid, whereas a lower difference of 1.25 fold increased tolerance was found for furfural (Table III). Since \(p \)-coumaric acid is a known toxic compound in biomass hydrolysate, and since its toxicity has been shown to affect production...
by fermentation (Sariaslani, 2007), we decided to study the mechanism of tolerance towards this compound in further detail.

The deletion of fcs does not affect the tolerance towards p-coumaric acid

P. putida KT2440 is able to degrade *p*-coumaric acid and use it as carbon source (Fig. 2A) (Jiménez et al., 2002). In order to investigate the effect of the degradation of *p*-coumaric acid on tolerance, a strain with a deletion of the first gene in the *p*-coumaric acid degradation pathway, *fcs*, which abolishes *p*-coumaric acid degradation or conversion to another compound (Calero, 2016), was tested in different concentrations of the compound. Its tolerance to *p*-coumaric acid was compared to the wild-type strain, which is able to degrade *p*-coumaric acid, and to *E. coli* K-12 MG1655. Whereas a *p*-coumaric acid concentration of 30 mM was enough to reduce the growth rate of *E. coli* to 68% of the control grown without the compound, no effect on growth was observed when this concentration was added to the *P. putida* KT2440 Δ*fcs* strain (Fig. 2B).

Tn5 library generation in *P. putida* KT2440 and *P. putida* KT2440 Δ*fcs*

Since degradation of *p*-coumaric acid was shown not to be involved in the increased tolerance of *P. putida* KT2440 towards *p*-coumaric acid, a random library of mini-Tn5 mutants was generated in order to further investigate the possible mechanisms of tolerance (Fig. 1B). To obtain a mutant library with a high genomic coverage, a triparental mating of two plasmids, pUT-Km, containing the transposon, and pRK600, a conjugation helper plasmid was performed (Herrero et al., 1990). To have a heterologous antibiotic resistance cassette for selection of the recipients with the mini-Tn5 insertions and to avoid growth of other strains used in the triparental mating, a gentamycin resistance gene was introduced into the genome of *P. putida* KT2440 and *P. putida* KT2440 Δ*fcs* using a mini-Tn7-Gm transposon (Fig. 1B). This approach inserts the gene in a fixed position on the genome, after the gene *glmS*, which has previously been shown to be innocuous to the cell physiology.
(Lambertsen et al., 2004). Using this method we avoided the natural chloramphenicol resistance of \(P. \text{\textit{putida}} \) KT2440 as a selection marker, which would introduce a bias in the transposon insertion sequencing results for mutants involved in the chloramphenicol resistance, such as the efflux pump TtgABC (Fernandez et al., 2012a). The use of alternative carbon sources, like citrate, that only the receptor strain could degrade was also avoided, and the developed method thereby enabled the use of LB in the creation of the library.

An efficiency of \(10^{-6} \) CFU/conjugant cells when using triparental mating was achieved (Fig. 1B). Using this method, a pooled library of \~\!125.000 mutants in \(P. \text{\textit{putida}} \) KT2440 and \~\!95.000 mutants in the strain \(P. \text{\textit{putida}} \) KT2440 \(\Delta \text{fcs} \) was generated. The number of transposon insertions corresponds to a theoretical insertion average of one insertion every 52 bp or one insertion every 65 bp, respectively.

The two independent \(P. \text{\textit{putida}} \) KT2440 and \(P. \text{\textit{putida}} \) KT2440 \(\Delta \text{fcs} \) libraries of random transposon insertion mutants were grown in modified M9 minimal media with or without supplementation of 50 mM \(p \)-coumaric acid as stressor. A comparison of the resulting populations of random insertions in each condition can be used to identify genes that are related to the growth under the stressful conditions. Cells were harvested for further analysis during late exponential growth, after approximately five generations in the presence of \(p \)-coumaric acid (Fig. 3A). The growth rate of the transposon insertion libraries when exposed to \(p \)-coumaric acid stress was 77% and 83% for \(P. \text{\textit{putida}} \) KT2440 and \(P. \text{\textit{putida}} \) KT2440 \(\Delta \text{fcs} \), respectively, compared to the libraries that were grown in modified M9 minimal medium, corresponding to increased doubling times from 82 to 107 minutes in the \(P. \text{\textit{putida}} \) KT2440 strain, and from 81 to 98 minutes in the \(P. \text{\textit{putida}} \) KT2440 \(\Delta \text{fcs} \) strain. The populations furthermore had an approximately 6 hours lag phase compared to the cultures without \(p \)-coumaric acid.
Tn-seq results demonstrate that the structure of the membrane has an important role in the tolerance of *P. putida* KT2440 to *p*-coumaric acid

Sequencing of the junctions between the transposon and the genome was achieved by generating an enriched library as previously described (Lennen and Herrgård, 2014). A pUT-Km transposon specific primer, BioTEG-Tn5-fw, was designed for the enrichment of the junctions (Table II). Sequencing of the enriched library resulted in the identification of approximately 12,900 different insertions with 20 reads or more in the library derived from *P. putida* KT2440 Δfcs, whereas approximately 6000 insertions with 20 reads or more were found in the *P. putida* KT2440 library. Using the generated libraries, we sought to identify genes involved in tolerance towards *p*-coumaric acid. A number of genes were found to be important for the growth of both *P. putida* KT2440 and *P. putida* KT2440 Δfcs when exposed to high concentrations of *p*-coumaric acid. Genes showing a very high impact on tolerance included the genes in the *ttg2ABCDE* operon, encoding an ABC (ATP-binding cassette) transporter. Transposon insertions in all of the genes in this operon had a strong effect on growth in the presence of *p*-coumaric acid, and these insertions were represented between 11 and 15 fold less in the presence of *p*-coumaric acid. Moreover, all the genes were found to have more than one insertion in different positions of the ORFs. The longest genes in the operon, *ttg2A*, *ttg2B* and *ttg2D* had 16, 17, and 13 different insertion sites, respectively, in *P. putida* KT2440, and 8, 7, and 7 in strain *P. putida* KT2440 Δfcs. On the other hand, *ttg2C* and *ttg2E*, which are shorter genes, were found to have 6 and 5 different insertion sites in strain *P. putida* KT2440 and 3 and 1 in strain *P. putida* KT2440 Δfcs. The loss of function of two other genes, *vacJ* and *fleN*, encoding an outer membrane protein and a flagellar number regulator, respectively, was also shown to impair growth in both strains in the presence of *p*-coumaric acid. Transposon insertions in *vacJ* were found to be approximately 15-fold less abundant when *p*-coumaric acid was present in the media, and mutations in *fleN*
were shown to be around 15-fold less represented when \(p \)-coumaric acid was present. The gene \(\textit{fleN} \) forms an operon together with \(\textit{fliA}, \textit{flhN}, \) and \(\textit{flhA} \), but none of the other operon members appeared to play a role in the tolerance to \(p \)-coumaric acid (Table IV).

A number of transposon insertions were also identified in just one of the two strain backgrounds. One of the most significant was the operon consisting of the genes \(\textit{ccmCDEF} \) and \(\textit{dsbE} \) in the strain \(\textit{P. putida} \) KT2440 \(\Delta \textit{fcs} \). All the genes in this operon, which encodes the cytochrome \(c \) maturation system, were shown to be involved in tolerance towards \(p \)-coumaric acid, except for \(\textit{ccmD} \), likely due to the fact that it is the shortest gene in the operon, with approximately 200 bp and therefore may not have been targeted by transposon insertions. The genes in the operon with intermediate lengths (450-550 bp), \(\textit{dsbE} \) and \(\textit{ccmE} \) were targeted by one type of insertion whereas the longest genes, \(\textit{ccmF} \) and \(\textit{ccmC} \) (2000 and 750 bp respectively) were found to have 5 and 2 different insertions, respectively. In all cases, the mutants in these genes were found to be represented approximately 13-fold less in the populations when \(p \)-coumaric acid was present in the media. In the \(\textit{P. putida} \) KT2440 library, genes encoding some other membrane proteins such as the outer membrane protein \(\textit{OprH} \), a surface adhesion protein encoded by gene \(\textit{PP}_0168 \) and an ABC transporter encoded by \(\textit{PP}_0674 \) were found to be related to the tolerance towards \(p \)-coumaric acid (Table IV).

The loss-of-function of two genes was found to increase the growth rate of both \(\textit{P. putida} \) KT2440 \(\Delta \textit{fcs} \) and \(\textit{P. putida} \) KT2440 in the presence of \(p \)-coumaric acid. These genes include the LysR family transcriptional regulator encoded by the gene \(\textit{PP}_1262 \) and the MarR family transcriptional regulator encoded by the gene \(\textit{PP}_4515 \). In both cases, the cells containing transposon insertions in these genes were found to grow better when \(p \)-coumaric acid was present and were approximately 15-fold more abundant under these conditions.

Loss of function in genes identified through the Tn-seq leads to impaired growth in the presence of \(p \)-coumaric acid

This article is protected by copyright. All rights reserved
Two complete operons, **ttg2** and **ccm**, were identified in both the assayed strain as playing an important role in the tolerance of *P. putida* KT2440 towards *p*-coumaric acid (Fig. 3B). To further investigate the role of these genes, independent insertion mutants available from the PRCC (Duque et al., 2007) in genes **ttg2A**, **ttg2B**, **ccmC**, and **ccmF** were acquired, while insertion mutants in genes **vacJ**, **tyrB** and **fleN** were constructed. The different strains were grown in medium containing different concentrations of *p*-coumaric acid, and a clear impact on the final optical density of the mutant strains was found when compared to the wild-type strain (Fig. 3C), and a similar effect was observed for the growth rate (Fig. S1). This result confirms that both the **ttg2** and **ccm** operons as well as other genes identified through the Tn-seq experiment are strongly involved in the tolerance towards the aromatic compound *p*-coumaric acid.

DISCUSSION

When compared to *E. coli*, *P. putida* KT2440 was found to have enhanced tolerance to only three out of the 11 tested industrially relevant compounds, when these were supplemented to the growth medium. Even though *P. putida* strains have been extensively studied for their tolerance to certain organic solvents such as toluene, *P. putida* KT2440 was not found to be more tolerant towards carboxylic acids (*levulinic acid, acetic acid, itaconic acid, and succinic acid*) and furfural when compared to *E. coli*. Surprisingly, *P. putida* KT2440 was not found to be more tolerant towards *n*-butanol, even though some *P. putida* strains, including *P. putida* DOT-T1E and S12, have a high tolerance towards organic solvents such as *n*-butanol (Rühl et al., 2009). It should be noted that the compounds were added to the growth medium in the given experiments. It is possible that the effect and tolerance mechanisms could be different if the compounds were produced intracellularly.

P. putida KT2440 was shown to be significantly more tolerant towards *p*-coumaric acid when compared to *E. coli*. Deletion of the first gene (**fcs**) of the degradation pathway revealed that
degradation of the compound was not the mechanism of detoxification. This observation agrees with previous observations showing that even though metabolism of toxic chemicals can help to alleviate toxicity, it is usually a minor mechanism of tolerance (Ramos et al., 2002). Interestingly, some defect on the growth was observed only for the wild-type strain when exposed to 30 mM of \(p \)-coumaric acid, and not for the deletion mutant, suggesting that certain intermediates in the degradation pathway may be toxic (Fig. 2B).

To further investigate the mechanism of tolerance towards \(p \)-coumaric acid, we developed a new method for generating large transposon libraries compatible with Tn-seq. By comparing sequences of libraries grown with or without inhibitory concentrations of \(p \)-coumaric acid, we identified 19 genes involved in the tolerance to \(p \)-coumaric acid, many of them involved in membrane processes. These results are in accordance to a previous study that investigated the mechanism of action of \(p \)-coumaric acid in different bacteria, and pointed towards membrane disruption as a main effect (Lou et al., 2012). The genes in the ABC (ATP-binding cassette) transporter, Ttg2ABC, were part of the seven genes for which loss-of-function indicated impaired growth in both strain libraries when exposed to high concentrations of \(p \)-coumaric acid. This transporter has previously been identified to play a role in the tolerance towards toluene in \(P. \ putida \) (Garcia et al., 2010; Kim et al., 1998), and it has been described to be involved in resistance to a number of other stress agents (Garcia et al., 2010).

Another gene with decreased abundance in both libraries when exposed to \(p \)-coumaric acid, \textit{vacJ} (PP_2163), contains the domain of the VacJ superfamilies. VacJ has been characterized as an outer membrane protein associated to an ABC transporter system in other organisms, such as \textit{E. coli} and \textit{Shigella flexneri}, in which it has been proposed to be involved in the maintenance of outer membrane stability in the presence of membrane disruptors such as SDS (Carpenter et al., 2014; Malinverni and Silhavy, 2009). Its deletion has been shown to increase permeability of the outer membrane (Malinverni and Silhavy, 2009) and increase the
formation of vesicles in *E. coli* and other gram-negative bacteria (Roier et al., 2016). In *P. aeruginosa*, a VacJ homolog has been described to play a role in antibiotic resistance. VacJ has also been shown to be more abundant in cells growing in the presence of phenol in *P. putida* KT2440 (Santos et al., 2004).

A transposon insertion in the flagellar number regulator *fleN* was shown to be important for tolerance towards *p*-coumaric acid. The deletion of this gene in *P. aeruginosa* has been shown to alter the single polar flagella localization, affecting the motility of the cells (Dasgupta et al., 2000). Even though some genes of the flagella systems have been identified in the tolerance towards toluene in the strain *P. putida* DOT-T1E, their function in the resistance is not clear, since it does not seem to be related to the cells motility (Ramos et al., 2002).

In one of the libraries, the complete *ccmCDEF-dsbE* operon, containing the genes PP_4321-PP_4325, was found to be of especial importance for tolerance towards *p*-coumaric acid. These genes encode the cytochrome *c* maturation system, which is known to be present in Proteobacteria, where it promotes the attachment of the heme group to the apocytochrome *c* in the periplasm, allowing the correct function of the type *c*-cytochrome in cell respiration and ATP synthesis (Thöny-Meyer, 2000). The effect of the lack of a functional operon in tolerance towards *p*-coumaric acid may indicate a high energy requirement or disruption of the membrane potential, causing the release of cytochrome *c*, as it has previously been shown in mitochondria (Shailasree et al., 2014). Moreover, an increased relative abundance of genes involved in energy metabolism in *E. coli* has also been shown to play a role in free fatty acids stress conditions (Lennen et al., 2011). Furthermore, the cytochrome *c* maturation system has been described to play a role in other cellular processes in other organisms (Cianciotto et al., 2005), such as *P. aeruginosa* (Baert et al., 2008) or *P. fluorescens* (Yang et al., 1996). A transposon insertion mutant in this operon in the strain *P. putida* P8 was found to have...
reduced cis-trans isomerization of unsaturated fatty acids, since a cytochrome c-type heme-binding motif was found to catalyze the activity of this enzyme.

In addition to the genes discussed above, other genes such as the transcriptional repressor phaN, a number of outer membrane proteins and surface adhesion proteins as well as other ABC transporters (PP_0168, PP_0674 and PP_1185) were identified to be important for tolerance, most of them in the *P. putida* KT2440 background. It is possible that these genes may be related to the detoxification of the intermediates of the *p*-coumaric acid degradation pathway. The identification of these efflux pumps supports the observation that the role of transporters are of major importance when *P. putida* KT2440 is exposed to chemical stress, as it has also been observed in other organisms such as *Clostridium acetobutylicum* in the presence of butanol.

The importance of some of these genes was validated by assessing the effect of *p*-coumaric acid on the growth of a number of independent insertion mutants in the genes *ttg2A* and *ttg2B, ccmC* and *ccmF, vacJ, tyrB* and *fleN*, which displayed clear growth impairment at high concentrations of *p*-coumaric acid when compared to the wild-type (Fig. 3B).

One of the beneficial insertions found, in gene PP_4515, is annotated in *P. putida* KT2440 as belonging to the MarR transcriptional regulator family. However, a BLASTp analysis of the protein sequence showed that this transcriptional regulator seems to be more closely related to the transcriptional regulator SlyA, with a 38% of identity in the amino acid sequence. SlyA belongs to a large family of regulators involved in different processes, and it has been shown to regulate chaperones and other stress proteins in one strain of *E. coli* (Spory et al., 2002). However, the activity of various homologs differs widely among species, thus further work is required in order to understand the cellular mechanism in *P. putida* KT2440 of this regulator.

The other gene, PP_1262, belonging to the LysR-type transcriptional regulator family has no known function. The LysR-type transcriptional regulator family has been described to
regulate a number of functions, such as aromatic acid metabolism, and both activators and repressors have been identified. Most of them are described to be transcribed divergently of the genes they regulate. Here, the operon PP_1263 to PP_1266, which is divergently transcribed, has been annotated as an efflux system for the export of fusaric acid, a fungal toxin released by phytopathogenes (Martins Dos Santos et al., 2004). Further studies are required to elucidate the effect of this regulator and the genes that it possibly regulates for the tolerance.

In conclusion, we have developed a method for generating large libraries of random insertion mutants in \textit{P. putida} KT2440 with a minimum amount of bias by avoiding natural \textit{P. putida} selection methods. \textit{P. putida} KT2440 was found to have enhanced tolerance towards \textit{p}-coumaric acid when compared to \textit{E. coli}. Using Tn-seq analysis, the mechanisms of tolerance were found to involve membrane stability, exclusion, and secretion of the toxic compound to the outside of the cell. Due to its significant tolerance, \textit{P. putida} could be a promising production host for \textit{p}-coumaric acid. The developed Tn-seq method will be generally useful for investigating a wide range of conditions in this organism.

ACKNOWLEDGEMENTS

This work was supported by The Novo Nordisk Foundation, and a PhD grant from the People Programme (Marie Curie Actions) of the European Union Seventh Framework Programme FP7-People-2012-ITN, under grant agreement No. 317058, “BACTORY”. We thank Juan Luis Ramos for providing strains from the PRCC and plasmids for the constructions of the libraries. The authors declare no conflict of interest.

REFERENCES

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

for the production of flavonoids from glucose. *Metab. Eng.* **13**:392–400.

FIGURE LEGENDS

Figure 1: A) Diagram of the experimental procedure used in a Tn-seq approach. A Tn5 insertion library (transposons depicted as green boxes) is constructed by transformation and used in growth assays in different conditions, in order to assess differential growth of each insertion mutant. After harvesting the cells, the extracted genomic DNA is processed by DNA shearing, A-tailing and ligation of adapters (blue boxes), followed by an enrichment using PCR. This enriched library is subsequently sequenced by NGS and the results of the number of readings in the different conditions are compared in order to identify the differential abundance of insertions. B) The method used in this study for generating the Tn5 library generating a combination of miniTn7-Gm and miniTn5-Km. The efficiency of the method to generate random insertion libraries was assessed by counting colonies of a sample.

Figure 2: A) Degradation pathway of p-coumaric acid in *P. putida* KT2440 ending in the tricarboxylic acid (TCA) cycle. B) Growth rates of *P. putida* KT2440, *E. coli* K-12 MG1655 and *P. putida* KT2440 Δfcs when exposed to different concentrations of p-coumaric acid. Growth rates were normalized to the growth rate in control conditions without p-coumaric acid. Error bars indicate the standard deviation of four different biological replicates.

Figure 3: A) Growth of the Tn5 libraries in *P. putida* KT2440 and *P. putida* KT2440 Δfcs in M9 and M9 supplemented with 50 mM of p-coumaric acid (pCA) is shown. The arrow indicates when p-coumaric acid was added to the cultures. The growth experiments ended when cells were harvested for DNA sequencing. B) Some of the most important genes identified to be involved in the tolerance of *P. putida* KT2440 towards p-coumaric acid in
their genetic landscape. The number of different insertions found in the Tn-seq assay is shown on top of each gene with arrows. C) Final OD$_{600}$ of strains of $P.\ putida$ KT2440 (WT), $ttg2A^-, ttg2B^-, ccmF^-, ccmC^-, vacJ^-, tyrB^-$ and $fleN^-$ at three different concentrations of p-coumaric acid: 0, 15, and 30 mM. Error bars indicate standard deviation of three independent biological replicates.
<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBK-miniTn7-gfp2</td>
<td>pUC19-based delivery plasmid for miniTn7-gfp2. GmR, CmR, ApR, mobq</td>
<td>(Koch et al., 2001)</td>
</tr>
<tr>
<td>pTNS2</td>
<td>R6K replicon-based helper plasmid, providing the Tn7 transposition functions in trans. ApRMob+</td>
<td>(Choi et al., 2005)</td>
</tr>
<tr>
<td>pUT-Km</td>
<td>R6K replication origin-based suicide delivery plasmid for miniTn5-Km. ApR Kmr</td>
<td>(Herrero et al., 1990)</td>
</tr>
<tr>
<td>pRK600</td>
<td>ColE1 oriV; RP4tra+ RP4oriT; CmR; helper in triparental matings</td>
<td>(Kessler et al., 1992)</td>
</tr>
<tr>
<td>pEMG</td>
<td>oriV(R6K), lacZα fragment with I-SceI sites; KmR</td>
<td>(Martínez-García and de Lorenzo, 2011)</td>
</tr>
<tr>
<td>pEMG-vacJ</td>
<td>oriV(R6K), lacZα fragment with I-SceI sites, with 500 bp of gene vacJ; KmR</td>
<td>This study</td>
</tr>
<tr>
<td>pEMG-tyrB</td>
<td>oriV(R6K), lacZα fragment with I-SceI sites, with 500 bp of gene tyrB; KmR</td>
<td>This study</td>
</tr>
<tr>
<td>pEMG-fleN</td>
<td>oriV(R6K), lacZα fragment with I-SceI sites, with 500 bp of gene fleN; KmR</td>
<td>This study</td>
</tr>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. putida KT2440</td>
<td>Mt-2 hsdR1 (r' m+)</td>
<td>(Bagdasarian et al., 1981)</td>
</tr>
<tr>
<td>P. putida KT2440 Δfcs</td>
<td>P. putida KT2440 derivative with gene fcs deleted</td>
<td>(Calero et al., 2016)</td>
</tr>
<tr>
<td>P. putida KT2440 ::miniTn7-Gm:GFP</td>
<td>P. putida KT2440 with Gentamycin resistance gene in a miniTn7</td>
<td>This study</td>
</tr>
<tr>
<td>P. putida KT2440 Δfcs ::miniTn7-Gm:GFP</td>
<td>P. putida KT2440 Δfcs with Gentamycin resistance gene in a miniTn7</td>
<td>This study</td>
</tr>
<tr>
<td>P. putida KT2440 ttg2A</td>
<td>P. putida KT2440 derivative with a miniTn5-Km insertion gene ttg2A</td>
<td>(Duque et al., 2007)</td>
</tr>
<tr>
<td>P. putida KT2440 ttg2B</td>
<td>P. putida KT2440 derivative with a miniTn5-Km insertion gene ttg2B</td>
<td>(Duque et al., 2007)</td>
</tr>
<tr>
<td>P. putida KT2440 ccmC</td>
<td>P. putida KT2440 derivative with a miniTn5-Km insertion gene ccmC</td>
<td>(Duque et al., 2007)</td>
</tr>
<tr>
<td>P. putida KT2440 ccmF</td>
<td>P. putida KT2440 derivative with a miniTn5-Km insertion gene ccmF</td>
<td>(Duque et al., 2007)</td>
</tr>
<tr>
<td>P. putida KT2440 vacJ</td>
<td>P. putida KT2440 derivative with an insertion in gene vacJ</td>
<td>This study</td>
</tr>
<tr>
<td>P. putida KT2440 tyrB</td>
<td>P. putida KT2440 derivative with an insertion in gene tyrB</td>
<td>This study</td>
</tr>
<tr>
<td>P. putida KT2440 fleN</td>
<td>P. putida KT2440 derivative with an insertion in gene fleN</td>
<td>This study</td>
</tr>
<tr>
<td>E. coli K-12 MG1655</td>
<td>F' hsdS gal</td>
<td>(Hanahan, 1985)</td>
</tr>
<tr>
<td>E. coli DH5α</td>
<td>φ80lacZΔM15 ∆(lacZYA-argF)U169 recA1 endA1 hsdR17 (rk' mk') supE44</td>
<td></td>
</tr>
</tbody>
</table>
thi-1 gyrA relA1
<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tn7-GlmS</td>
<td>AATCTGGCCAAGTGGGTGAC</td>
<td>Check miniTn7 integration after glmS</td>
</tr>
<tr>
<td>Tn7R109</td>
<td>CAGCATAACTGGAATGATTTCAAG</td>
<td></td>
</tr>
<tr>
<td>BioTEG-Tn5-fw</td>
<td>AATGATACGGAGCACCACGGAGATC</td>
<td>Biotinylated primer with TEG in 5’ for enrichment of the Tn5 fragments. Bold sequence corresponds to the sequence that anneals with the transposon.</td>
</tr>
<tr>
<td></td>
<td>TTCCGATCTAGCCGGATCTCTCTAGAGTC</td>
<td></td>
</tr>
<tr>
<td>Tn5seq_rev</td>
<td>CAAGCAGAAGAGACGCATACGAGAT</td>
<td>Enrichment of the Tn5 fragments.</td>
</tr>
<tr>
<td></td>
<td>GGAAGCAGTCAACCGCC</td>
<td></td>
</tr>
<tr>
<td>vacJ-ins-U-rv</td>
<td>ATCCCTAGAAAUTAATTAATTAATT</td>
<td>Same as the previous one. In italics overhangs homologous to pEMG_phuser_rv.</td>
</tr>
<tr>
<td></td>
<td>AGTTTTCGAGCCGAGCATG</td>
<td></td>
</tr>
<tr>
<td>TyrB-ins-U-fw</td>
<td>ATCTGAGTUTAAATTAATTAATTAG</td>
<td>Same as the previous pair fot gene tyrB.</td>
</tr>
<tr>
<td>TyrB-ins-U-rv</td>
<td>ATCCCTAGAAAUTAATTAATTAATT</td>
<td>Same as the previous pair fot gene tyrB.</td>
</tr>
<tr>
<td>FleN-ins-U-fw</td>
<td>ATCTGAGTUTAAATTAATTAATT</td>
<td>Same as the previous pair fot gene fleN.</td>
</tr>
<tr>
<td>FleN-ins-U-rv</td>
<td>ATCCCTAGAAAUTAATTAATTAATT</td>
<td>Same as the previous pair fot gene fleN.</td>
</tr>
<tr>
<td>pEMG_phuser_fw</td>
<td>ATTTTCGAGGUAACAGGGATAC</td>
<td>Cloning in pEMG</td>
</tr>
<tr>
<td>pEMG_phuser_rv</td>
<td>AACTCAGAUTCCTGGTATCCCT</td>
<td>Cloning in pEMG</td>
</tr>
<tr>
<td></td>
<td>AGCTTTTGGGAGCC</td>
<td></td>
</tr>
</tbody>
</table>
Table III: Concentrations of biochemicals leading to a 33% reduction in the growth rate (mM)

<table>
<thead>
<tr>
<th>Biochemical</th>
<th>P. putida KT2440</th>
<th>E. coli MG1655</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itaconic acid</td>
<td>189.5</td>
<td>215.2*</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>148.3</td>
<td>262.5*</td>
</tr>
<tr>
<td>Threonine</td>
<td>412.0</td>
<td>58.8*</td>
</tr>
<tr>
<td>Sodium acetate</td>
<td>65.6</td>
<td>91.4*</td>
</tr>
<tr>
<td>Butanol</td>
<td>40.2</td>
<td>82.0*</td>
</tr>
<tr>
<td>Levulinic acid</td>
<td>40.0</td>
<td>67.0*</td>
</tr>
<tr>
<td>1,4-butanediol</td>
<td>398.7</td>
<td>452.7*</td>
</tr>
<tr>
<td>Furfural</td>
<td>14.9</td>
<td>12.0*</td>
</tr>
<tr>
<td>3-hydroxy-γ-butyrolactone</td>
<td>58.0</td>
<td>133.7*</td>
</tr>
<tr>
<td>Octanoic acid</td>
<td>39.5</td>
<td>15.0</td>
</tr>
<tr>
<td>p-Coumaric acid</td>
<td>61.0</td>
<td>30.4</td>
</tr>
</tbody>
</table>

* Data obtained from (Rau et al., 2016).
<table>
<thead>
<tr>
<th>Gene</th>
<th>Number of insertions</th>
<th>Fold change</th>
<th>Gene name</th>
<th>Gene function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP_0958</td>
<td>24</td>
<td>11.3</td>
<td>ttg2A</td>
<td>Toluene tolerance ABC efflux transporter ATP-binding protein</td>
</tr>
<tr>
<td>PP_0959</td>
<td>24</td>
<td>10.4</td>
<td>ttg2B</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>PP_0960</td>
<td>9</td>
<td>15.2</td>
<td>ttg2C</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>PP_0961</td>
<td>20</td>
<td>11.7</td>
<td>ttg2D</td>
<td>Toluene tolerance family protein</td>
</tr>
<tr>
<td>PP_0962</td>
<td>6</td>
<td>11.1</td>
<td>ttg2E</td>
<td>Toluene-tolerance protein</td>
</tr>
<tr>
<td>PP_2163</td>
<td>7</td>
<td>13.4</td>
<td>vacJ</td>
<td>VacJ family lipoprotein</td>
</tr>
<tr>
<td>PP_4342</td>
<td>6</td>
<td>8.16</td>
<td>fleN</td>
<td>Flagellar number regulator FleN</td>
</tr>
<tr>
<td>PP_3286</td>
<td>1</td>
<td>9.3</td>
<td>phaN</td>
<td>PaaX family transcriptional regulator</td>
</tr>
<tr>
<td>PP_4320</td>
<td>1</td>
<td>8.1</td>
<td>ccmH</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>PP_4321</td>
<td>1</td>
<td>7.7</td>
<td>ccmG</td>
<td>Thiol-disulfide oxidoreductase</td>
</tr>
<tr>
<td>PP_4322</td>
<td>5</td>
<td>7.4</td>
<td>ccmF</td>
<td>Cytochrome C biogenesis protein CcmF</td>
</tr>
<tr>
<td>PP_4323</td>
<td>1</td>
<td>8.2</td>
<td>ccmE</td>
<td>Cytochrome C biogenesis protein CcmE</td>
</tr>
<tr>
<td>PP_4325</td>
<td>2</td>
<td>7.2</td>
<td>ccmC</td>
<td>Heme exporter protein CcmC</td>
</tr>
<tr>
<td>PP_4937</td>
<td>1</td>
<td>7.1</td>
<td></td>
<td>Toluene tolerance protein</td>
</tr>
<tr>
<td>PP_0168</td>
<td>1</td>
<td>18.8</td>
<td></td>
<td>Surface adhesion protein</td>
</tr>
<tr>
<td>PP_0674</td>
<td>1</td>
<td>6.1</td>
<td></td>
<td>ABC transporter ATP-binding protein</td>
</tr>
<tr>
<td>PP_1185</td>
<td>1</td>
<td>7.5</td>
<td>oprH</td>
<td>Outer membrane protein H1</td>
</tr>
<tr>
<td>PP_1972</td>
<td>1</td>
<td>6.3</td>
<td>tyrB-1</td>
<td>Aromatic amino acid aminotransferase</td>
</tr>
<tr>
<td>PP_2889</td>
<td>2</td>
<td>10.2</td>
<td></td>
<td>Transmembrane anti-sigma factor</td>
</tr>
</tbody>
</table>

a: Important genes found in both strains
b: Important genes found in the strain P. putida KT2440 ΔfcS
c: Important genes found in the strain P. putida KT2440
Figure 1
Figure 2

A

\[p\text{-Coumarate} \xrightarrow{fcaR} 4\text{-Hydroxybenzoate} \xrightarrow{pobA} \text{Protocatechuate} \xrightarrow{pcaABCDGH} \beta\text{-Keto adipate} \xrightarrow{pcaIJF} \text{TCA cycle} \]

B

<table>
<thead>
<tr>
<th></th>
<th>0 mM</th>
<th>15 mM</th>
<th>30 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P. \text{putida}) KT2440</td>
<td>![Bar Graph](Bar Graph KT2440 0 mM)</td>
<td>![Bar Graph](Bar Graph KT2440 15 mM)</td>
<td>![Bar Graph](Bar Graph KT2440 30 mM)</td>
</tr>
<tr>
<td>(E. \text{coli}) MG1655</td>
<td>![Bar Graph](Bar Graph Ecoli 0 mM)</td>
<td>![Bar Graph](Bar Graph Ecoli 15 mM)</td>
<td>![Bar Graph](Bar Graph Ecoli 30 mM)</td>
</tr>
<tr>
<td>(P. \text{putida}) KT2440(\Delta fcs)</td>
<td>![Bar Graph](Bar Graph KT2440Δfcs 0 mM)</td>
<td>![Bar Graph](Bar Graph KT2440Δfcs 15 mM)</td>
<td>![Bar Graph](Bar Graph KT2440Δfcs 30 mM)</td>
</tr>
</tbody>
</table>

Normalized growth rates (% of control)
Figure 3