In Operando Raman spectroscopy for investigation of solid oxide electrolysis cells

Traulsen, Marie Lund; Walker, R. A.; Holtappels, Peter

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In Operando Raman spectroscopy for investigation of solid oxide electrolysis cells

Marie Lund Traulsena, R. A. Walkerb, Peter Holtappelsa

aTechnical University of Denmark, DTU Energy; b Montana State University, Department of Chemistry and Biochemistry

Raman spectroscopy is an optical, vibrational spectroscopy well suited for in operando investigations, as the technique can be applied at the temperatures and gas pressures used during operation of solid oxide electrolysis cells.

For this reason DTU Energy has invested in a Raman lab dedicated to in operando investigation of solid oxide electrolysis cells and other electrochemical systems.

In operando monitoring of carbon depositions in a Ni-YSZ cell
The carbon deposition in 50\% CO/50\% CO\textsubscript{2} at 750 °C was followed on a symmetric Ni-YSZ cell mounted vertically in the test-house to allow for monitoring of the electrochemically active region.

Reversible Decomposition of Secondary Phases in BaO Infiltrated LSM Electrodes—Polarization Effects
Compositional changes in BaO-modified lanthanum strontium manganite (LSM) electrodes where observed during electrical polarization. The applied cathodic potential resulted in a reversible decomposition of a secondary Ba\textsubscript{3}Mn\textsubscript{2}O\textsubscript{8} phase

Raman shift [cm-1] Assignment
306 Ba\textsubscript{3}Mn\textsubscript{2}O\textsubscript{8}
610 MnO\textsubscript{4}
644 Mn\textsubscript{3}O\textsubscript{4}
773 Ba\textsubscript{3}Mn\textsubscript{2}O\textsubscript{8}
1051 MnO/BaCO\textsubscript{3}

For further information please contact Marie Lund Traulsen (matr@dtu.dk)