Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup; Arnsdorf, Johnny; Hefzi, Hooman; Lund, Anne Mathilde; Kwang Ha, Tae; Wulff, Tune; Kildegaard, Helene Fastrup; Andersen, Mikael Rørdam

Publication date:
2017

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Reprogramming Amino Acid Catabolism in CHO Cells with CRISPR-Cas9 Genome Editing Improves Cell Growth and Reduces By-Product Secretion

Daniel Ley1,2, Sara Pereira3, Lasse Ebdrup Pedersen3, Johnny Arnsdorff4, Hooman Hefzi3,4, Anne Mathilde Lund1, Tae Kwang Ha2, Tune Wulff2, Helene Fastrup Kildegaard2, Mikael Rørdam Andersen1.

Background

Amino acid catabolism produces a wide range of growth inhibiting compounds, amongst these ammonium and lactate. Ammonium is produced by transamination and deamination reactions, whereas lactate is produced by either amino acid catabolic pathways fueling glycolysis or by NAD+ production, catabolic pathways, which forces the cell to regenerate NAD+ through lactate synthesis. Disruption of amino acid catabolic pathways may reduce production of growth-inhibiting metabolic by-products.

Physiology of single gene disrupted CHO cells

To study the physiological impact of disrupting single amino acid catabolic pathways, we characterized single gene disrupted clones in triplicate shake flask cultures in batch mode. We monitored physiological changes in terms of maximum specific growth rate (μ_{max}), integral of viable cell density (IVCD) and secretion of lactate and ammonium.

Single gene disrupted clones generally showed an increased growth phenotype with 8 of 9 clones displaying increased μ_{max} up to 115% of WT, while 6 of 9 clones had increased IVCD (up to 136% of WT). Specific secretion of ammonium was reduced in 5 of 9 clones (down to 91% of WT), while specific secretion of lactate was reduced in 4 of 9 clones (down to 81% of WT), and increased µ max and IVCD, leading to increased titers of recombinant protein.

To exclude that the improved phenotypes are caused by clonal variation, we characterized multiple clones with different mutations in gene 4 and 6, and found a strong link between genotype and phenotype.

Validation of functional gene knock-out

Functional gene disruptions were validated using deep sequencing of the targeted genomic loci, gene expression analysis, western blots and proteomics. All genes displayed out-of-frame mutations (A) and generally reduced transcription (B). Western blots indicated potential wild loci, gene expression analysis, western blots and proteomics. All genes displayed out-of-frame mutations (A) and generally reduced transcription (B). Western blots indicated potential wild loci, gene expression analysis, western blots and proteomics.

Conclusion

Disruption of single amino acid catabolic pathways in CHO cells reduces specific production of lactate and ammonium, while increasing μ_{max} and IVCD, leading to increased titers of recombinant proteins. Disruption of multiple catabolic pathways further reduces secretion of lactate and ammonium, but does not increase growth. Thus, we recommend combinatorial disruption of multiple amino acid catabolic pathways, to identify a set of disruptions that increase growth, while reducing secretion of lactate and ammonium.

References

Acknowledgements

The authors thank Indian Poonam Harsh and Zywiec Sakai for technical assistance with generation of genome edited cell lines. Moreover, we thank Sanne Øjlund Fagervold for cloning plasmids and Thomas Bruchott Kallehschau for sharing his experience in design of quantification PCR experiments and Line Hellegodt Blicher for assisting in the proteomics experiment. The Novo Nordisk Foundation provided funding for this work.