Class-D amplifier design and performance for driving a Piezo Actuator Drive servomotor.

Zsurzsan, Tiberiu-Gabriel; Zhang, Zhe; Andersen, Michael A. E.; Andersen, Nils Axel

Published in:
Proceedings of 2016 IEEE International Conference on Industrial Technology

Link to article, DOI:
10.1109/ICIT.2016.7474902

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Class-D amplifier design and performance for driving a Piezo Actuator Drive servomotor

Gabriel T. Zsurzsanz*, Zhe Zhang, Michael M.A. Andersen and Nils A. Andersen
Department of Electrical Engineering, Technical University of Denmark
Denmark
E-mail: *tgzsur@elektro.dtu.dk

Abstract—This paper investigates the behavior of piezoelectric stacks in a Piezoelectric Actuator Drive (PAD) motor, which shows non-linear equivalent impedance and has a dramatic impact on the overall system performance. Therefore, in this paper, the piezo stack's model is discussed and an improved large signal model is proposed and verified by measurement. Finally, a Class-D amplifier as a power driver and its associated closed-loop control are implemented and tested to control PAD drive effectively.

Index Terms—Piezoelectricity, motor, control

I. INTRODUCTION

THE The Piezoelectric Actuator Drive (PAD) is a new type of electrical motor that employs piezoelectric multilayer actuators which have inherent capacitive behavior [1]–[5]. The PADs internal structure is shown in Fig. 1. Through voltage excitation, the multilayer actuators expand and contract linearly along their length [6]–[8]. Therefore, by applying a sinusoidal voltage to the actuators on one axis and a 90° phase-shift version to the other actuators, the resulting space-vector and trajectory will be circular, and the corresponding waveforms are illustrated in Fig. 2 respectively. In order to control PAD drives effectively and efficiently, in this paper, besides small signal model, an improved large signal model of piezoelectric actuators equipped in PADs is proposed to estimate the apparent power transferring through the power driver accurately. A switched-mode Class-D power amplifier [9], [10] i.e. a synchronous Buck converter is employed as the driver generating the needed two channel phase-shifted sinusoidal outputs. The analysis and design of the power driver and its associated average current mode closed-loop controller implemented digitally are presented. Finally, the analysis is verified by the measurement results from a laboratory prototype.

II. PIEZOELECTRIC STACK ACTUATORS

Considering piezoelectric stack a constant load capacitance allows for designing the power amplifier in terms of component stresses, switching frequency and efficiency. However, neglecting the non-linear nature of the piezo stack impedance hides many important phenomena. To better describe the piezo stacks behavior, both small signal (SS) and large signal (LS) impedance are measured, which can be used for a mathematical analysis of system and more importantly for power driver design. The SS capacitance and loss tangent of a

![Fig. 1. PAD motor (a) and its internal structure (b). The internal structure of the PAD is made up of 4 PMA actuators acting against a motor ring, which in turn is coupled to the shaft through a micromechanical gearing. The pitch of the gears is 100µm.](image-url)
Fig. 2. Sine and cosine voltage signals applied to the actuators, normalized to their period (a) and ideal spatial trajectory obtained (b).

Fig. 3. Derating of small-signal capacitance with the increase of dc voltage.

Fig. 4. Large signal model of the stacks: normal model (a), and the proposed improved model (right).

free standing piezo stack is measured with a 100 Hz, 1 V rms excitation signal by OMICRON Lab Bode 100 and Picotest J2130A DC Bias Injector. The result, which shows a similar small signal feature with ceramic capacitors, can be seen in Fig. 3. The normally used LS model is given in (1), where the current (RMS) of piezo stack is approximated by simple linear function of the SS signal capacitance C_{ss} and applied RMS voltage V_{rms}. However, from Fig. 4a, the measured piezo stack rms currents deviate from the estimated ones based on (1). Therefore, an improved LS model is presented in (2) with an exponential function rather than a linear one, which can more actually predict the load current, as shown in Fig. 4b. The exponential curve is based off of empirical observations of stack behavior. This can then more accurately be used to specify the power driver design.

\[
 i_{rms} = 2\pi \cdot f \cdot C_{ss} \cdot V_{rms} \tag{1}
\]

\[
 i_{rms} = 2\pi \cdot f \cdot C_{ss} \cdot (a \cdot e^{b \cdot V_{rms}} - c) \tag{2}
\]
TABLE I

<table>
<thead>
<tr>
<th></th>
<th>25 Hz</th>
<th>50 Hz</th>
<th>75 Hz</th>
<th>100 Hz</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>51.26</td>
<td>45.02</td>
<td>45.72</td>
<td>42.65</td>
<td>46.16</td>
</tr>
<tr>
<td>b</td>
<td>0.013</td>
<td>0.014</td>
<td>0.014</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>c</td>
<td>51.62</td>
<td>45.31</td>
<td>46.03</td>
<td>42.87</td>
<td>46.46</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>200 Vdc</td>
</tr>
<tr>
<td>Modulation index M</td>
<td>0.1 – 0.9</td>
</tr>
<tr>
<td>Output voltage</td>
<td>20 V – 180 V</td>
</tr>
<tr>
<td>Switching frequency f_s</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Output frequency</td>
<td>0 Hz – 200 Hz</td>
</tr>
<tr>
<td>Maximum motor torque τ</td>
<td>2 N·m</td>
</tr>
</tbody>
</table>

where the coefficients a, b and c are obtained by averaging the fitted parameter with four diverse operating frequencies as listed in Table I.

III. DRIVER STAGE

A bidirectional Buck converter illustrated in Fig. 5 is adopted as the power driver in this study. The specifications are listed in Table II. Therefore, based on the LS model given above, the output power per axis as a function of torque and output frequency, and equivalent load resistance as a function of output power are plotted in Fig. 6. Then the maximal delivered power of the driver can be calculated, from which the switching devices and the output inductor can be selected. With the output inductor L of 270 μH, the inductor current ripple-to-average ratio (RAR) at $f = 200$ Hz and $\tau = 2$ N·m is shown in Fig. 7, where the factor 2 is marked with a red line. With output frequency f decreasing, the RAR will much larger than 2. In this case the inductor current direction reverses twice during every switching period and the power switches can operate under ZVS condition.

IV. CONTROL

The control strategy is an average current control mode. As shown in Fig. 8, an inner current loop regulates the inductor current while an outer voltage loop regulates the output voltage, where G_{id} and G_{sv} represent the SS transfer functions of duty cycle to inductor current and inductor current to output voltage, respectively. The current compensator is a PID controller to achieve an adequate phase margin, since the sampling and hold process as well as the computational delay contributes a negative effect on phase response. The outer voltage compensator is simply a P controller to avoid overshoot. The transfer functions of the controllers are shown in (3) and (4)

\[
G_{ci} = \frac{0.1393 - 0.1748z^{-1} + 0.0548z^{-2}}{1 - 1.043z^{-1} + 0.0432z^{-2}} \tag{3}
\]
\[
G_{cv} = 2.875 \tag{4}
\]

The frequency responses of the plant and the designed controllers are presented in Fig. 10 and the digital realization is implemented as shown in Fig. 9.

V. EXPERIMENTAL RESULTS

In order to verify the analysis, a prototype is built as shown in Fig. 11, and also the thermal measurement under full load from an infrared camera is presented in Fig. 12, where the maximum temperature stays below 60°C. Output voltage waveforms at lowest and highest frequencies tested are shown in Fig. 14. Moreover, a X-Y voltage plot of the two outputs under frequencies ranging from 10 Hz – 250 Hz is shown in Fig. 13, which verifies the voltage control performance of the driver. To verify that the motor is truly working in closed loop,
Fig. 6. Output power of the driver and equivalent load resistance.

(a)

Output frequency (Hz)

(b)

Output power (W)

Fig. 10. Open loop response of uncompensated current loop (blue) and designed compensator (red) (a) and response of uncompensated voltage loop (blue) and designed compensator (red) (b).

(a)

(b)

Fig. 9. Realization diagram of implemented digital controller.

Fig. 15 shows the output response to the input voltage step from 200 V to 250 V, and there is no significant voltage change in output voltage which means the control loop works effectively. Finally, the power loss in the PAD system including the driver and the motor has been measured and shown in Fig.16. It can be seen clearly that the converter loss increases with increasing output frequency.

VI. CONCLUSION

This work presents the implementation of a digitally controlled Class-D switch mode driver to drive a PAD motor. The piezo elements of the motor have been analyzed with both small and large signals. The motor is a highly capacitive load with a capacitance increase of up to 100% at large signals. Due to the capacitive nature of piezo actuators, the power loss
driver has to be designed physically large relative to the active power it processes. A discrete closed loop controller is implemented on the digital signal controller. Measurement results show that the PAD has been driven with up to 250 Hz and the THD over the entire frequency range is from 0.9% to 1.4%. The PAD was not pushed any further in frequency due to the high loss on the piezoelectric stacks. It would be interesting to optimize the driver in terms of size and power efficiency in future research work.

REFERENCES

Fig. 13. Derating of small-signal capacitance with the increase of dc voltage.

Fig. 15. Response to input voltage step.

Fig. 16. Derating of small-signal capacitance with the increase of dc voltage.

