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Abstract 37 

Purpose Fine particulate matter (PM2.5) is considered to be one of the most important 38 

environmental factors contributing to the global human disease burden. However, due to the 39 

lack of broad consensus and harmonization in the life cycle assessment (LCA) community, 40 

there is no clear guidance on how to consistently include health effects from PM2.5 exposure 41 

in LCA practice. As a consequence, different models are currently used to assess life cycle 42 

impacts for PM2.5, sometimes leading to inconsistent results. In a global effort initiated by the 43 

UNEP/SETAC Life Cycle Initiative, respiratory inorganics impacts expressed as health 44 

effects from PM2.5 exposure were selected as one of the initial impact categories to undergo 45 

review with the goal of providing global guidance for implementation in life cycle impact 46 

assessment (LCIA). The goal of this paper is to summarize the current knowledge and 47 

practice for assessing health effects from PM2.5 exposure and to provide recommendations for 48 

their consistent integration into LCIA. 49 

Methods A task force on human health impacts was convened to build the framework for 50 

consistently quantifying health effects from PM2.5 exposure and for recommending PM2.5 51 

characterization factors. In an initial Guidance Workshop, existing literature was reviewed 52 

and input from a broad range of internationally-recognized experts was obtained and 53 

discussed. Workshop objectives were to identify the main scientific questions and challenges 54 

for quantifying health effects from PM2.5 exposure, and to provide initial guidance to the 55 

impact quantification process. 56 

Results and recommendations A set of 10 recommendations was developed addressing: 57 

(a) the general framework for assessing PM2.5-related health effects, (b) approaches and data 58 

to estimate human exposure to PM2.5 using intake fractions, and (c) approaches and data to 59 

characterize exposure-response functions (ERF) for PM2.5 and to quantify severity of the 60 

diseases attributed to PM2.5 exposure. Despite these advances, a number of complex issues, 61 

such as those related to non-linearity of the ERF and the possible need to provide different 62 

ERF’s for use in different geographic regions, require further analysis. 63 

Conclusions and outlook Questions of how to refine and improve the overall framework 64 

were analyzed. Data and models were proposed for harmonizing various elements of the 65 

health impact pathways for PM2.5. Within the next two years, our goal is to build a global 66 

guidance framework and to determine characterization factors that are more reliable for 67 

incorporating the health effects from exposure to PM2.5 into LCIA. Ideally, this will allow 68 

quantification of the impacts of both indoor and outdoor exposure to PM2.5. 69 

 70 
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1 Health effects from fine particulate matter: Towards global guidance in life cycle 75 

assessment 76 

Life cycle assessment (LCA) is a structured, comprehensive, and internationally 77 

standardized method to assess potential environmental impacts and resources used throughout 78 

the life cycle of a good or service in a comparable way (ISO 2006). LCA thereby aims for 79 

best estimates in the modelling of all relevant impacts on the natural environment, human 80 

health, and resources in the life cycle impact assessment (LCIA) phase (EC 2010a, Finnveden 81 

et al. 2009). To help identify best LCA practice, Phase III (2012-2016) of the UNEP/SETAC 82 

Life Cycle Initiative
1
 has launched a flagship project aiming to provide global guidance and 83 

consensus on a limited number of LCIA indicators. The Glasgow Scoping Workshop in May 84 

2013 (Jolliet et al. 2014) focused on establishing a tentative short list of impact category 85 

indicators that would be addressed during two consensus building periods. These indicators 86 

included the impacts of respiratory inorganics expressed as health effects from exposure to 87 

primary and secondary particulate matter (PM), which is considered to be one of the most 88 

important environmental stressors contributing to the global human disease burden (Hänninen 89 

et al. 2014, Lim et al. 2012). Primary PM refers to directly emitted particles. Secondary PM 90 

refers to organic and inorganic (e.g. ammonium nitrate, ammonium sulfate) particles formed 91 

through reactions of precursor substances including nitrogen oxides (NOx), sulfur oxides 92 

(SOx), ammonia (NH3), semivolatile and volatile organic compounds (VOC), of which the 93 

latter are most important for secondary organic aerosol formation. PM is further distinguished 94 

according to aerodynamic diameter, i.e. respirable particles (PM10) with <10 µm, fine 95 

particles (PM2.5) with <2.5 µm, and ultrafine particles (UFP) with <100 nm aerodynamic 96 

diameter (WHO 2006). PM2.5 was chosen to provide international recommendations regarding 97 

the consistent integration of its health effects into LCIA because it might best describe the 98 

component of particulate matter responsible for adverse health effects (Harrison & Yin 2000, 99 

Lim et al. 2012, Lippmann & Chen 2009). 100 

 101 

2 Assessing fine particulate matter in the context of life cycle impact assessment 102 

In epidemiological studies, exposure to PM2.5 is associated with various adverse health 103 

effects and reduction in life expectancy including chronic and acute respiratory and 104 

cardiovascular morbidity, chronic and acute mortality, lung cancer, diabetes, and adverse birth 105 

outcomes (Beelen et al. 2014, Brook et al. 2010, Chen et al. 2008, COMEAP 2010, Dadvand 106 

et al. 2013, Hoek et al. 2013, Künzli et al. 2000, Lippmann & Chen 2009, Loomis et al. 2013, 107 

                                                 
1
 http://www.lifecycleinitiative.org/activities/phase-iii 

http://www.lifecycleinitiative.org/activities/phase-iii/
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Mehta et al. 2013, Pelucchi et al. 2009, Pope III et al. 2009, Pope III et al. 2011, Straif et al. 108 

2013). Furthermore, toxicological studies support the observation that exposure to PM2.5 can 109 

exert effects on key biological systems, with some evidence that not all particles are likely to 110 

cause the same health effects (Harrison & Yin 2000, Kelly & Fussell 2012, Rohr & Wyzga 111 

2012, Stanek et al. 2011). Several existing LCIA methods already characterize health effects 112 

associated with ambient PM or PM2.5 concentrations (EC 2010c), mostly based on ambient 113 

PM2.5 intake estimated from simple exposure or intake fraction models and using health effect 114 

data from the Harvard Six Cities and American Cancer Society studies (Krewski et al. 2000, 115 

Laden et al. 2006, Pope III et al. 2002). A few studies include spatial allocation of emissions 116 

and modeling of air dispersion and chemical reactions to predict downwind PM2.5 117 

concentrations (Hill et al. 2009, Tessum et al. 2012). Whenever emission locations are known, 118 

these spatially-explicit approaches can be applied in LCIA. It is anticipated in the future to 119 

fully assess PM2.5 impacts using such spatially explicit approaches. In the current absence of 120 

this capacity,  a consistent and globally harmonized approach for LCIA should be based on 121 

the most recent science to simultaneously address environmental fate, human exposure, and 122 

health effects of PM2.5 concentrations resulting from emissions of primary PM2.5 and 123 

secondary PM2.5 precursors (Hauschild et al. 2013). 124 

One of the challenges in LCA is that impacts are linked to emissions via intake, whereas 125 

in epidemiology, impacts are related to concentrations. Generally, when assessing the health 126 

response of a population, the most accurate and efficient approach is to relate observed 127 

concentrations to population response. This also constitutes the basis for the LCA framework. 128 

However, this approach needs to be adapted for the emission-based LCA context for which 129 

the impact of an additional kg emitted by multiple sources in different, often unknown 130 

locations needs to be evaluated (Finnveden et al. 2009, Hauschild 2005). For such emission-131 

based assessments, the human intake fraction (iF) as the fraction of an emitted mass 132 

ultimately taken in by the total exposed population is well adapted, accounting directly for a 133 

temporally and spatially integrated concentration multiplied by nominal human intake rates. 134 

Intake fraction is a time- and space-integrated metric, easy to understand, to communicate and 135 

to combine with chemical emissions. Emission source types can be associated with specific 136 

iF, which is easier to interface and combine at the level of exposure than a field of 137 

concentrations over a certain distance around the source. 138 

With respect to assessing the particular health effects from PM2.5 exposure, the effort of 139 

an earlier UNEP/SETAC working group has designed a framework and proposed a set of 140 

default iF associated with PM2.5 emissions for use in LCIA (Humbert et al. 2011). This effort 141 
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is limited to the steps of the impact pathway from emissions to concentration and human 142 

intake, but does not cover the steps from human intake to health effects. In addition, due to 143 

the lack of broad consensus and harmonization in the LCA community, there is no clear 144 

guidance on how to include health effects from PM2.5 exposure in LCA practice. As a 145 

consequence, different models are currently used leading at times to inconsistent life cycle 146 

impact results reported for this category. This reveals the importance of pursuing consensus 147 

building, based on the initial work of Humbert et al. (2011) and combining it with latest 148 

exposure-response and severity data to yield revised guidance on the development and use of 149 

human health characterization factors for both primary and secondary PM2.5 including 150 

precursor substances. Ultrafine particles are currently not separately considered in LCA. 151 

To meet our needs for global guidance and harmonization regarding health effects from 152 

PM2.5 exposure in LCIA, the UNEP/SETAC Life Cycle Initiative established a task force on 153 

human health impacts. The aim of the task force is to build within the next two years a 154 

framework and determine factors recommended for incorporating human health effects from 155 

PM2.5 exposure into LCIA and addressing both outdoor and indoor releases. In order to 156 

provide a starting point for the task force effort, the workshop participants summarize in this 157 

paper the current knowledge on and practice in assessing the health effects from PM2.5 158 

exposure including related recommendations. 159 

 160 

3 The Basel Guidance Workshop: Identifying and addressing the key questions 161 

Within the task force on human health impacts, an initial Guidance Workshop was 162 

organized back-to-back with the ISEE/ISES/ISIAQ Environment and Health Conference in 163 

Basel, Switzerland, in August 2013. Based on a literature review and expert input, the 164 

workshop organizers reached out to a broad range of internationally recognized experts in PM 165 

exposure and health effects. Sixteen of these experts agreed both to participate in the process 166 

and attend the Basel workshop (in person or by phone). This included experts from Canada, 167 

Denmark, Finland, Germany, Poland, Spain, Switzerland, the United Kingdom, and the 168 

United States. Many others have agreed to contribute in some form to the task force activities. 169 

The specific objectives of the workshop were to first identify and discuss the main 170 

scientific questions and challenges for quantifying human health effects from PM2.5 exposure, 171 

and then to provide initial guidance to the impact quantification process. Three main topics 172 

were addressed at the workshop: (a) the general assessment framework as proposed by 173 

Humbert et al. (2011), (b) approaches and data to determine human exposure to PM2.5 174 

expressed as intake fractions, and (c) approaches and data to determine exposure-response 175 
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functions (ERF) for PM2.5 along with disease severity. For these topics, the workshop 176 

participants discussed a set of key questions that had been established with selected experts in 177 

three pre-workshop phone conferences. Table 1 summarizes these key questions, which are 178 

discussed in detail in the following. 179 

 180 

Table 1 Key questions discussed during the Basel Guidance Workshop 181 

1. General assessment framework 

 Can we use the framework that is proposed in Figure 1 based on work from Humbert et 
al. (2011) to include health effects from respiration of ambient particulate matter into 
life cycle impact assessment? 

2. Human intake fraction 

 What additional factors/aspects will we have to take into account, i.e. those that 
substantially influence intake fractions by at least a factor of two? 

 Can we use archetypes to disaggregate aspects influencing intake fractions (emission 
stack height, primary/secondary particulates, particle size, and urban/rural/remote area) 
and what archetypal structure is meaningful? 

 What is the added value of applying archetypes for emission sources (e.g. road 
transport) or specific regions (e.g. China)? 

 How do we arrive at a consistent set of emission-weighted average intake fractions? 

 Which existing studies, methods, and models are best or most usefully suited as 
starting points for arriving at a consistent set of intake fractions to improve factors 
stated in Humbert et al. (2011)? 

 How can we properly address in life cycle impact assessment the combined 
environmental fate aspects of ammonia, nitrogen oxides, and sulfur oxides? 

3. Exposure-response functions and effect evaluation 

 What are the major studies that we need to take into account to determine exposure-
response functions for relevant health effects? 

 In addition to cardiovascular diseases and lung cancer, is it relevant to include other 
health effects, such as bronchitis or asthma in children? 

 To what extent are exposure-response functions available for the fraction of 
particulates with an aerodynamic diameter below 2.5 µm and what alternative approach 
would be applicable? 

 Are there any emerging studies that would challenge our default approach? 

 Are there studies providing evidence and specific exposure-response functions for 
differentiated effects for primary and secondary particulates? 

 What relevant exposure studies are available for exposure to particulates from indoor 
sources and for outdoor particulates emissions in different parts of the world? 

 How far can studies focusing on the United States (or studies mentioned under the first 
question of point 3) be applied as a default for different parts of the world or for indoor 
exposure to particulates? 

 How can we consistently account for the severity of different (mortality and morbidity) 
health effects based on disability weights? 

 How can damage measures be suggested in order of priority in terms of health effects? 

4. Additional remarks 

 What additional comments or recommendations could improve the set of intake 
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fractions, exposure-response functions and severity factors? 

 182 

4 General assessment framework recommendations 183 

An overall picture of the approach currently proposed for health effects attributed to 184 

PM2.5 exposure in LCIA including the findings of the Basel guidance workshop is presented 185 

in Figure 1. 186 

 187 

 188 

Figure 1 Proposed framework for assessing human health effects from fine particulate matter 189 

exposure in life cycle impact assessment; adapted from Humbert et al. (2011). 190 

 191 

4.1 Overall assessment approach 192 

There was agreement among the workshop participants to build upon the general 193 

framework proposed by Humbert et al. (2011). In this framework, human intake fractions for 194 

primary and secondary PM2.5 are provided, emissions from low and high stacks are 195 

differentiated, and dominant influences for generic landscape characteristics are 196 

parameterized. Humbert et al. (2011) thereby start from emissions of primary PM2.5 and 197 

secondary PM2.5 precursors into the environment, m (mass emitted), and multiply these 198 

emissions with intake fractions, iF (mass of PM2.5 inhaled by the affected population per mass 199 

of primary PM2.5 or secondary PM2.5 precursor emitted, respectively), an exposure-response 200 

factor derived from epidemiological studies linking health effects in the affected population to 201 

ambient PM2.5 concentrations,
2
 ERF (disease rate per unit mass concentration), and a severity 202 

                                                 
2
 PM2.5 concentrations can be converted to intake using the breathing rate of the exposed population. How to 

average the breathing rate for different activities, age, etc. remains to be further discussed. 
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factor, SF (disability-adjusted life years, DALY per disease case), to arrive at a human health-203 

related impact score, IS (DALY): 204 


CF

SFERFiFmIS               (1) 205 

Intake fraction, exposure-response factor and severity factor can be represented by the 206 

characterization factor, CF (DALY per mass emitted). A key assumption implicit in this 207 

framework is the linear, no-threshold ERF. While not uncontroversial, this assumption 208 

reflects current practice and recent recommendations in LCIA (EC 2010b, Potting et al. 209 

2007), and is also applied in other studies as discussed e.g. in COMEAP (2009). 210 

 211 

4.2 Exposure metrics 212 

Two exposure metrics, (i) ambient PM2.5 concentration, and (ii) population intake of PM2.5, 213 

were considered as possible starting points for assessing health impacts from PM2.5 exposure. 214 

It should be noted that, when all populations are assigned the same population breathing rate, 215 

the exposure expressed as either ambient concentration or intake fraction are exactly 216 

proportional. In other LCIA areas, health impacts are typically assessed using population 217 

intake as exposure metric (Udo de Haes et al. 2002). This approach can be justified for many 218 

endpoints, e.g. cancer risk assessment for genetic carcinogens, where risk is proportional to 219 

cumulative intake (often expressed as applied dose), i.e. where there are no population 220 

thresholds and no appreciable non-linearities in the relationship between intake and response. 221 

However, in cases where there are thresholds, i.e. concentrations or intakes below which 222 

health effects are not induced even in the most sensitive individuals, or significant non-223 

linearities in describing response as a function of concentration or cumulative intake, this 224 

simple approach may not provide a satisfactory representation of the effect of changes in 225 

exposure on population health risk. To make the approach more appropriate in such cases, the 226 

population intake fraction can be used as a measure of the population’s ambient PM2.5 227 

exposure. For population exposure to PM2.5, it is reasonable to assume no threshold, but there 228 

are possibilities for non-linear response for highly exposed populations (Burnett et al. 2014). 229 

Epidemiological studies of the health impacts of exposure to PM2.5 typically report the 230 

relative risk of morbidity or mortality (i.e., the ratio of the risk among the exposed to that 231 

among the unexposed) as a function of the concentration of PM2.5 measured at fixed site 232 

monitors (see, for example, COMEAP 2010). They are not based on concentrations found 233 

through personal exposure monitoring (Hurley et al. 2005). In LCIA, the impact of an 234 

additional kg often emitted by multiple sources at different, often unknown locations over the 235 

life cycle is evaluated, making it effectively impossible to report the related concentrations. 236 
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Recognizing the need for a population-scale exposure metric often without access to site-237 

specific emissions data, workshop participants recommended the use of population intake 238 

fraction, which is equivalent to population exposure concentration, as the default measure for 239 

computing PM2.5 health risks in LCIA. Population intake estimates computed using iF reflect 240 

the change in population-weighted intake of the ambient outdoor concentration. Thus, intake 241 

estimates are directly related to concentrations underlying epidemiological estimates of 242 

mortality and morbidity risks from PM2.5 exposure, although this requires knowledge about 243 

background concentrations when using non-linear exposure-response functions. 244 

 245 

4.3 Health metrics 246 

Various health metrics were discussed, including total and premature mortality, years of 247 

life lost (YLL), and disability-adjusted life years (DALY). Most workshop participants felt 248 

that when death is the outcome of interest, YLL is a better measure of mortality impacts than 249 

numbers of deaths. The view was that information on the number of deaths is more 250 

challenging to interpret because reduced PM2.5 intake cannot affect the fact of death, but only 251 

its cause and timing (Leksell & Rabl 2001, Rabl 2005). When it is necessary to combine 252 

mortality and morbidity impacts into a single summary measure, two approaches can be used. 253 

The first approach is to use DALY combining YLL and years lived with a disability (YLD) 254 

weighted by the quality of life during the period of disability (Murray & Lopez 1996b, 255 

Murray & Lopez 1996a). The second approach, which is frequently preferred by economists, 256 

is to use weights reflecting societal willingness to pay to avoid small incremental risks of 257 

mortality and morbidity. 258 

The workshop participants see no reason to reconsider this matter. In summary, YLL and 259 

DALY seem to be appropriate health metrics for use in LCIA, since they focus attention on 260 

actions with the greatest potential to lead to improvement in the number of healthy life years 261 

lived by the exposed populations (Wang et al. 2012). In addition, selecting a preferred 262 

approach is an issue that affects all analyses of health impacts in LCIA. Typically, LCIA has 263 

relied on the DALY metric (EC 2010b) without age-weighting and/or discounting. 264 

 265 

4.4 Other framework discussion points 266 

Two additional aspects were briefly discussed at the workshop: (i) whether and, if so, 267 

how to address the dynamics when expressing of health impacts attributable to PM2.5 268 

exposure, and (ii) how to account for differences between average and marginal impacts on 269 

health of primary and secondary PM2.5 precursor emissions, which may occur when either 270 
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emissions-exposure or exposure-response functions exhibit thresholds or significant non-271 

linearities. The workshop participants agreed that in the long-term both issues require further 272 

attention. 273 

 274 

5 From emissions to concentration and human intake: Determining intake fractions 275 

5.1 Archetypes structure 276 

In LCIA, it is common practice to make use of archetypal exposure scenarios, e.g. urban 277 

vs. rural scenarios (Riley et al. 2002), rather than site-specific exposure assessments, 278 

especially when emission locations are unknown. The workshop discussion focused on 279 

identifying the key factors influencing iF and determining how to address these in the context 280 

of quantifying PM2.5-related health effects in LCIA. Table 3 in Humbert et al. (2011) 281 

proposed one such archetypal structure in which population density (urban, rural, remote) and 282 

emission height (high-stack, low-stack, ground-level) serve as the main determinants of iF. 283 

Humbert et al. also provided a default set of iF values corresponding to these archetypes. 284 

Workshop participants agreed to adopt this structure as starting point, but pointed out that 285 

additional refinements in terms of archetypes need to be explored. Refinements can thereby 286 

build on applying a sensitivity analysis to a range of aspects that influence the variability of 287 

iF. This includes, for example, distinct urban areas based on work by Apte et al. (2012) and 288 

different emission sources, such as traffic-related sources (Greco et al. 2007, Lobscheid et al. 289 

2012, Marshall et al. 2005), stationary emissions from coal/gas-fired power plants (Heath et 290 

al. 2006, Levy et al. 2003, Levy et al. 2002), or indoor emissions from wood burning (Ries et 291 

al. 2009). The participants also agreed to include additional archetypes reflecting exposure 292 

from indoor emissions of PM2.5 based on work by Hellweg et al. (2009). 293 

 294 

5.2 Geographical differentiation 295 

Despite the availability of studies that examine the influence of geographical location and 296 

spatial resolution on PM2.5 concentrations and exposures (Kheirbek et al. 2013, Zhou et al. 297 

2006), questions remain about the level of geographical differentiation appropriate for LCIA 298 

and about how to properly characterize in LCIA the effects of differences in population age 299 

structure and disease incidence rates. Both issues appear to require further discussion. Based 300 

on that, workshop participants agreed that it would be useful to develop regional and/or 301 

continental sets of archetype-based iF to account for differences in environmental conditions 302 

(e.g. climate, precipitation, background concentration of secondary PM2.5 precursors), 303 
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exposure conditions (e.g. population density, stack height), and receptor attributes (e.g. 304 

population age structure, disease incidence rates). 305 

To account for differences in spatial scales, workshop participants suggested developing 306 

LCIA methods that differentiate between near-field (e.g. occupational settings; within 10 m), 307 

neighborhood (scale of a block; order of 100 m), urban (cities; order of 10-100 km), regional 308 

(order of 100-1,000 km), and continental scales (up to 10,000 km), thereby refining the 309 

archetypes used in Humbert et al. (2011). 310 

Workshop participants also discussed the complex interactions between emissions of 311 

NH3, NOx and SOx with respect to the formation and intake of secondary nitrates and sulfates. 312 

At the regional-continental scale, in areas with little agriculture and significant industrial 313 

activity (for example, along the east coast of the US), emissions of NH3 are a limiting factor 314 

for secondary PM2.5 formation, whereas in rural areas dominated by agriculture, NOx and SOx 315 

are more commonly the factors limiting the formation of secondary PM2.5 (Paulot & Jacob 316 

2014, Squizzato et al. 2013, Xu & Penner 2012). It was noted that geographically-resolved 317 

data for primary PM2.5 and secondary PM2.5 precursor emissions and iF for different emission 318 

heights are available for some regions (Apte et al. 2012, Levy et al. 2002, Pregger & Friedrich 319 

2009), but are not consistently available at the global level. It was agreed that in any attempt 320 

to differentiate geographic regions, particulate matter type (primary vs. secondary) is an 321 

important aspect to consider – secondary PM2.5 iF are less sensitive than primary PM2.5 iF to 322 

near source environmental, exposure and receptor characteristics (Humbert et al. 2011, Levy 323 

et al. 2003). 324 

 325 

5.3 Aggregation of intake fractions 326 

When combining iF from multiple sources, the appropriate approach is to multiply each 327 

emission’s iF by the magnitude of that emission, sum this product for all emissions being 328 

combined and then divide by the total emissions to obtain the emissions-weighted iF for all 329 

the individual emissions that are linked by their association with a given functional unit in an 330 

LCA. In cases where emissions are not well characterized, it can be assumed that emissions 331 

(e.g. from vehicles or energy production) are proportional to population (Humbert et al. 332 

2011). Population-weighted iF have been used in some studies as a proxy for emission-333 

weighted iF (Apte et al. 2012, Humbert et al. 2009), but other source- or sector-specific 334 

emission-weights exist to account for spatial correlations between source locations and 335 

population patterns (Levy et al. 2002, Lobscheid et al. 2012). 336 
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For all cases where the region, emission sources and locations, and/or population 337 

exposure conditions are unknown, it was agreed to use an emission-weighted average iF (i.e., 338 

site-generic) in the context of LCIA, as population intake is the result of multiplying iF by the 339 

corresponding emissions. To arrive at such emission-weights, the workshop participants 340 

suggested that the iF of each region/area (e.g. Indochina, Scandinavia) should be weighted 341 

according to the proportion of the contribution of this region to the total emission in the 342 

considered geographical domain (typically continental or global scale). This approach would 343 

be entirely consistent with previous efforts to develop iF values intended to be used to 344 

quantify the impact of PM2.5 or PM2.5 precursor emissions on ambient PM2.5 concentrations 345 

(Humbert et al. 2011, Levy et al. 2003, Marshall et al. 2003, Tainio et al. 2009). 346 

 347 

6 From concentration and human intake to health effects: Defining appropriate 348 

exposure-response functions 349 

6.1 Effect assessment starting point 350 

In LCIA, ERF link estimates of population exposure with estimates of health effects. 351 

Whereas some guidance is available on deriving PM2.5 intake fractions for use in LCIA 352 

(Humbert et al. 2011), guidance has not yet been established on the development of PM2.5 353 

exposure-response to support LCIA. 354 

Workshop participants agreed that models developed in support of the Global Burden of 355 

Disease Study (GBD) 2010 (Lim et al. 2012) may provide a reasonable framework for 356 

calculating health effects of PM2.5 exposure. GBD 2010 provides estimates of the health 357 

effects (expressed in DALY) caused by 67 risk factors for both 1990 and 2010. GBD 358 

estimates are provided for each of 21 world regions (based on epidemiological homogeneity 359 

and geographical contiguity) and are disaggregated by age (20 groups) and sex. PM2.5 as one 360 

of the considered risk factors was associated with five adverse health effects – ischemic heart 361 

disease, cerebrovascular disease, cancers of the trachea/bronchus or lung, chronic obstructive 362 

pulmonary disease among adults (≥25 years old), and lower respiratory infections among 363 

young children (≤5 years old). For these effects, risk estimates were developed using an 364 

integrated exposure-response (IER) function which provided cause-specific estimates of the 365 

relative risk as a function of the ambient PM2.5 concentration over a broad range of exposures 366 

from the counterfactual or threshold level to concentrations on the order of 100 μg/m
3
 367 

(Burnett et al. 2014). This model was labelled “integrated” because it combined evidence 368 

from studies of the health effects of ambient PM2.5 with studies of the effects of active and 369 
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passive smoking. Other health effects were not considered, because epidemiological evidence 370 

was either inconclusive or absent. 371 

GBD 2010 not only computes the relative risks of various health effects as a function of 372 

ambient PM2.5 concentrations, but also assigns DALY to each of the five health outcomes 373 

studied. In their 2010 analysis, GBD uses DALY that (a) are neither age-weighted nor 374 

discounted, (b) were derived using a counterfactual life expectancy at birth of 86 years for 375 

both males and females derived from the lowest age-specific death rates observed in any 376 

country (Murray et al. 2012), and (c) using disability weights derived from population-based 377 

household surveys involving 13,902 participants from Bangladesh, Indonesia, Peru, South 378 

Africa, Tanzania and the United States and an internet-based survey of 16,328 participants 379 

from 167 countries, 44% of whom were from the United States (Salomon et al. 2012). The 380 

approach applied in GBD 2010 to derive DALY that are not age-weighted or discounted, is 381 

consistent with current LCIA practice (EC 2010c). 382 

In summary, workshop participants consider the GBD 2010 models for the relative risks 383 

of the five health effects as a function of ambient PM2.5 concentrations as suitable starting 384 

points for developing ERF for use in LCIA. Because PM2.5 exposures associated with LCA 385 

applications and populations differ from those addressed in the GBD study, the question of 386 

whether the GBD 2010 disability weights for PM2.5 are well-suited to directly apply in LCIA 387 

requires further discussion. Currently, the workshop participants consider the GBD 2010 388 

disability weights a useful starting point. 389 

 390 

6.2 Health effects 391 

Health effects associated with PM2.5 exposure include a wide range of diseases. To date, 392 

PM exposure-response functions used in LCIA have focused on chronic and acute mortality 393 

and acute respiratory and cardiovascular morbidity associated with exposure to PM10 (van 394 

Zelm et al. 2008) or on cardiopulmonary mortality and lung cancer attributable to chronic 395 

exposure to PM2.5 (Gronlund et al. 2014). ERF have been derived using several approaches 396 

discussed in EC (2010c), primarily based on results from the Harvard Six Cities and 397 

American Cancer Society studies (Krewski et al. 2000, Laden et al. 2006, Pope III et al. 398 

2002). Although the impact of PM2.5 exposure on asthma has been reported in several 399 

epidemiological studies (Brauer et al. 2002, Kheirbek et al. 2013, Künzli et al. 2000), asthma 400 

is usually not considered in LCIA. At the workshop, it was noted that evidence linking PM2.5 401 

exposure with new asthma incidences is inconclusive, whereas it does support a link between 402 

PM2.5 exposure and the exacerbation of existing asthma (Donaldson et al. 2000, Gavett & 403 
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Koren 2001, Pope III et al. 1995). However, since it is unclear how to differentiate between 404 

induction of new cases and exacerbation of existing disease, there was no agreement on 405 

whether, and if so how, to include asthma as a health effect in LCIA. 406 

It was emphasized that, in addition to the GBD 2010 effort, there is a large European 407 

movement to decide which health effects associated with PM2.5 exposure to quantify. This 408 

involves two projects
3
 – the Health Risks of Air Pollution in Europe, HRAPIE (WHO 2013a), 409 

and Review of Evidence on Health Aspects of Air Pollution, REVIHAAP (WHO 2013b). 410 

These projects aim to provide advice in support of the comprehensive review of European 411 

Union’s air quality policies scheduled for 2013. A consensus document reflecting this effort 412 

was published end of 2013 (WHO 2013a). Whereas the GBD 2010 effort focuses on cause-413 

specific mortality, the HRAPIE/REVIHAAP projects recommend all-cause analysis as 414 

primary choice and cause-specific analysis as alternative method based on similarity of the 415 

frequency of the causes of death linked with exposure between considered cohorts and 416 

countries. It can be argued that a cause-specific assessment is particularly important in global 417 

assessments because of the large geographical variability in the relative importance of various 418 

causes of death. This view is supported by several studies (Lipsett et al. 2011, Miller et al. 419 

2007, Puett et al. 2011, Puett et al. 2009). 420 

Considering these different approaches, workshop participants agreed to recommend that 421 

LCIA should assess cause-specific mortality, when feasible, whereas all-cause mortality along 422 

with an appropriate assessment of uncertainty might still be useful in case of inconclusive 423 

allocation to causes. Furthermore, health effects considered in GBD 2010 and in the HRAPIE 424 

consensus document should serve as a starting point. 425 

 426 

6.3 Shape of exposure-response functions 427 

In current LCIA practice, the shape of population ERF is usually assumed to be linear 428 

with no threshold. This approach is supported by several studies which find no evidence of a 429 

departure from linearity (Chen et al. 2013, Schwartz et al. 2008, Stafoggia et al. 2013, WHO 430 

2006) and no evidence suggesting a threshold at the population level (COMEAP 2009, 2010). 431 

Despite this, when these linear functions are applied to the very high PM2.5 levels often found 432 

in developing countries, the estimates of risk are so high as to be implausible (Abrahamowicz 433 

et al. 2003, EC 2010b). Recently, several research groups have suggested non-linear ERF that 434 

could be applied across a large range of PM2.5 concentrations, from very low to very high 435 

PM2.5 concentrations. These are typically steep at low concentration levels and relatively flat 436 

                                                 
3
 http://www.euro.who.int/en/what-we-do/health-topics/environment-and-health/air-quality/activities/health-

aspects-of-air-pollution-and-review-of-eu-policies-the-revihaap-and-hrapie-projects 

http://www.euro.who.int/en/what-we-do/health-topics/environment-and-health/air-quality/activities/health-aspects-of-air-pollution-and-review-of-eu-policies-the-revihaap-and-hrapie-projects
http://www.euro.who.int/en/what-we-do/health-topics/environment-and-health/air-quality/activities/health-aspects-of-air-pollution-and-review-of-eu-policies-the-revihaap-and-hrapie-projects
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at high levels (Abrahamowicz et al. 2003, Burnett et al. 2014, Ostro 2004, Pope III et al. 437 

2009). Whether, and if so, how this approach can be adapted for use in LCIA needs to be 438 

further discussed, acknowledging that LCA aims to support decisions in regions with low 439 

concentration levels and also in regions with high concentration levels. From a sustainability 440 

point of view, intervention in highly polluted areas may be a priority despite the lower 441 

response per unit exposure. Significant departures from linearity would imply that iF would 442 

need to be reconstructed in a manner that is stratified by PM2.5 concentration or other relevant 443 

factors. In making such a change, it is also important to realize that the shape of the ERF 444 

might be effect-specific – for example nearly linear for lung cancer, but substantially non-445 

linear for cardiovascular mortality (Pope III et al. 2011). In GBD 2010, effect-specific, 446 

integrated ERF are proposed for PM2.5 (Lim et al. 2012). These ERF express relative risk as 447 

an exponential function (or a power function) of PM2.5 concentration (Burnett et al. 2014). In 448 

order to apply such non-linear ERF in LCIA, non-linear models can either be directly applied 449 

as e.g. in van Zelm et al. (2008) for ozone formation or be decomposed into piecewise linear 450 

functions. Workshop participants explained that methods for applying this approach are 451 

currently being developed. 452 

In summary, it was agreed to further discuss how the ERF from GBD 2010 together with 453 

recommendations from the HRAPIE project can be adapted to serve as starting points. 454 

Thereby, workshop participants acknowledge that the slope of any linear ERF will vary as a 455 

function of different PM2.5 concentration ranges. LCIA methods will therefore need to be 456 

developed which can account for the variation in background levels of ambient PM2.5 around 457 

the world. This is challenging because in an LCA framework, the exact geographical 458 

locations of individual emission sources are typically unknown (Finnveden et al. 2009, 459 

Hauschild 2005, Humbert et al. 2011). Even if the source locations were known, the LCA 460 

analyst would need to integrate concentrations (and risks) over large areas, including 461 

individuals quite close to the source as well as those far from the source, to capture the entire 462 

exposed population. In principle, this can be addressed by treating the location of the emission 463 

source as uncertain and computing the distribution of possible impacts and recognizing this as 464 

a source of uncertainty in estimates of health impact. 465 

 466 

6.4 Particle characteristics and differential toxicity 467 

PM2.5 mass is commonly used as an indicator of the risk associated with exposure to a 468 

mixture of particle-related pollutants (of different sizes below 2.5 µm diameter) from diverse 469 

(primary or secondary) sources and in different environments (COMEAP 2009, Lim et al. 470 
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2012, Pope III et al. 2009, Pope III et al. 2011). This approach, which implicitly assumes 471 

equal toxicity of PM2.5 constituents per mass unit, is commonly used in LCIA (Potting et al. 472 

2007). There is currently no scientific consensus on the relative toxicity of various 473 

constituents of PM2.5. This, however, does not suggest that all particle constituents are in fact 474 

equally toxic, but instead that the toxicological and epidemiological evidence of differential 475 

toxicity is inconclusive (Hurley et al. 2005). One study found differential toxicity of multiple 476 

particle constituents for short-term exposure effects on hospital admissions (Levy et al. 2012), 477 

but further research is required to address other health outcomes, long-term exposure, and 478 

other geographical settings (Rohr & Wyzga 2012). 479 

In view of this it was agreed to use PM2.5 mass as an indicator of exposure without 480 

differentiating between and among primary and secondary PM2.5 and without differentiating 481 

between different PM2.5 constituents in terms of toxicity for cause-specific chronic mortality 482 

effects. However, the workshop participants understood that given the current state of 483 

scientific uncertainty about this matter it would be important to develop an approach for 484 

characterizing the uncertainty of the toxicity of various constituents of PM2.5 which reflects 485 

the lack of knowledge about which constituents of PM2.5 are in fact responsible for the 486 

toxicity of the mixture. 487 

Another aspect in the discussion of particle characteristics is particle size. Experimental 488 

studies suggest that health effects from exposure to the ultrafine particle (UFP) fraction differ 489 

from those of larger particles due to distinct deposition patterns in the lung and clearance 490 

mechanisms (Oberdörster et al. 2005). There is epidemiological and toxicological evidence 491 

for specific adverse respiratory and cardiovascular effects from exposure to UFP (Delfino et 492 

al. 2005, Weichenthal et al. 2007). However, the limited evidence currently available is 493 

inconsistent for short-term exposure and does not yet address the impacts of long-term 494 

exposure (Rückerl et al. 2011). Thus, it is not yet possible to determine how health effects 495 

associated with exposure to UFP differ from those associated with exposure to larger particles 496 

(HEI 2013). Moreover, there is only limited literature that would allow for calculating iF for 497 

UFP, which is generally characterized by particle number rather than particle mass. 498 

As a result, workshop participants decided not to separately incorporate UFP into LCIA 499 

at present, but suggested that in the future a correction factor might be introduced to account 500 

for the distribution of particle sizes. 501 

 502 
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7 Conclusions and next steps 503 

7.1 Conclusions 504 

Workshop participants discussed the questions shown in Table 1 in an effort to find ways 505 

to refine and improve the overall framework and to suggest data and models that could 506 

harmonize the analysis of health impacts from exposure to ambient particulate matter. This 507 

discussion constituted a first step towards developing recommendations for addressing the 508 

health effects from exposure associated with emissions of primary PM2.5 and secondary PM2.5 509 

precursors in LCIA. A set of 10 recommendations reflecting the consensus of workshop 510 

participants are summarized as follows: 511 

 The intake fraction framework proposed by Humbert et al. (2011) provides a useful 512 

starting point for assessing health effects of ambient PM in LCIA with a focus on PM2.5. 513 

 Human intake fractions can be used to estimate emission-related population exposure. In 514 

conjunction with population-averaged breathing rates, intake fractions can be used to 515 

estimate intake from air concentrations. 516 

 Disability-adjusted life years without age-weighting or discounting, which aggregate 517 

mortality and morbidity, can be used as a summary health metric. 518 

 For most cases, where emission locations are unknown, exposure scenario archetypes 519 

provide a useful approach to account for factors, such as population density, emission 520 

height, and exposure to PM2.5 from indoor sources, which influence human intake 521 

fractions. The decision whether additional archetypes are necessary should be based on a 522 

sensitivity analysis that considers the importance of these additional factors in reducing 523 

uncertainty in exposure estimates. When the exact emission location is known, spatially 524 

explicit fate and transport models should be used. 525 

 Geographical archetypes of intake fractions should be established for indoor, near-field, 526 

neighborhood, urban, regional, and continental scales. Geographical differentiation 527 

should be further discussed and analyzed with respect to scale and non-linear chemical 528 

processes in the formation of secondary PM2.5. 529 

 Emission-weighted average intake fractions should be used in cases where the nature of 530 

the emission sources and/or exposure conditions is unclear. 531 

 The Global Burden of Disease Study 2010 is considered to provide a useful starting point 532 

for developing exposure-response functions for assessing PM2.5-related health effects in 533 

LCIA. 534 
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 Cause-specific mortality can provide a more informative basis for developing LCIA 535 

characterization factors than all-cause mortality. Assumptions for age- and cause-specific 536 

disability weights should be further discussed and analyzed. 537 

 Non-linear exposure-response functions are recommended in the Global Burden of 538 

Disease Study 2010, whereas linear functions are used in the consensus document of the 539 

Health Risks of Air Pollution in Europe projects. There remains a need for discussion 540 

about whether, and if so, how to integrate non-linear (or piecewise linear) exposure-541 

response functions into LCIA. 542 

 PM2.5 mass can be used as the indicator of the health risk associated with PM inhalation 543 

exposure in LCIA. There is no justification at this time to differentiate between different 544 

primary/secondary PM2.5 sources or between different PM2.5 particle sizes regarding 545 

toxicity. However, analyses should report the uncertainties inherent in any assumptions 546 

made about the relative toxicity of various types of particles. 547 

 548 

7.2 Next steps 549 

Within the next two years, the goals of the task force on human health impacts are to 550 

build a global guidance framework and to determine characterization factors for incorporating 551 

the health effects from exposure to PM2.5 in LCIA and for including both indoor and outdoor 552 

releases. As next steps towards these goals, the first set of recommendations from the Basel 553 

Guidance Workshop will be taken. Open questions and unsolved problems will be further 554 

studied that were pointed out by workshop participants and the proposed framework will be 555 

refined based on best available data and methods. The harmonized framework and related 556 

results will finally be presented at a Pellston Technical Workshop
4
 in 2015.557 

                                                 
4
 Pellston Workshops are preeminent workshops held by the SETAC, each of which brings together leading 

scientists from academia, business, and governments around the world and focuses on a relevant environmental 

topic with proceedings published as a peer-reviewed report, book or journal article compilation. 
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