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ABSTRACT

We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354—645.
The source was observed during its 2015 “hard” state outburst; we concentrate on spectra from two relatively
bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection
spectrum, blurred by a degree that requires a black hole spin of a = ¢J/GM? > 0.98 (1o statistical limits only).
The fits also require a high inclination: # ~ 75(2)°. Strong “dips” are sometimes observed in the X-ray light curves
of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk
structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial
truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and
inner accretion flow geometries at moderate accretion rates.
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1. INTRODUCTION

Low-mass X-ray binaries are binary systems comprised of a
compact object accreting matter from a low-mass companion
star. The accretion disk is luminous across the electromagnetic
bandpass, but it peaks in the X-ray band. The hot corona
contributes in the hard X-ray band. Without a need for strong
bolometric corrections, X-ray studies of these sources can
accurately constrain the geometry of the inner accretion flow
and its energetic properties (for a review of stellar-mass black
holes in such settings, see Remillard & McClintock 2006).
Owing to their proximity, Galactic binaries are excellent
laboratories for probing the extreme gravitational effects of
black holes.

Astrophysical black holes can be fully described by their
mass and “spin” (dimensionless angular momentum;
a=cJ/GM?* where —1 < a < 1). The location of the
innermost stable circular orbit (ISCO) around the black hole
depends on the spin parameter. For a Schwarzschild black hole
(zero spin), the radius of the the ISCO is at Rigco = 6 GM/c?.
In an extreme Kerr black hole (maximally spinning),
Risco =~ 1GM /c? (e.g., Bardeen et al. 1972).

Hard X-rays produced via Comptonization and/or sychro-
tron in the corona are “reflected” from the accretion disk, and
this effect can be used to measure the spin of both stellar-mass
and supermassive black holes (for recent reviews, see, e.g.,
Miller 2007; Reynolds 2014; Miller & Miller 2015). The
reflection spectrum is “blurred” by the strong Doppler shifts
and gravitational redshifts close to the black hole, effectively
tracing the radius of the ISCO and the spin of the black hole.
Resolution is important in such studies, but sensitivity and a
broad spectral bandpass are also very important. NuSTAR
(Harrison et al. 2013) has unprecedented sensitivity in the
3-79 keV band and does not suffer from distorting effects such
as photon pile-up; it is an ideal mission for studies of reflection

and black hole spin (see, e.g., Miller et al. 2013a, 2013b;
Risaliti et al. 2013; King et al. 2014; Parker et al. 2014;
Tomsick et al. 2014; Furst et al. 2015).

Other important measurements can be obtained through
reflection modeling. Among these are the inclination of the
innermost accretion disk, though models can also measure the
ionization of the inner disk, and can also constrain elemental
abundances. In the best cases, the size of the hard X-ray corona
can even be constrained (e.g., Miller et al. 2015). Progress has
not only relied upon improved X-ray instrumentation, but also
improved reflection models. In particular, relxill (e.g.,
Garcia et al. 2013; Dauser et al. 2014) offers many advantages
over prior models, including internal relativistic blurring and
angle-dependent scattering calculations.

The object of this work, GS 1354645, is a binary system
comprising a dynamically confirmed black hole of mass
Mgy > 7.6(7) M (Casares et al. 2009) and a low-mass
stellar companion. It was first detected using the All Sky
Monitor aboard the Ginga satellite during an outburst in 1987
(Kitamoto et al. 1990). The last outburst of this source was
detected using RXTE in 1997 (e.g., Revnivtsev et al. 2000;
Brocksopp et al. 2001; also see Reynolds & Miller 2013). The
distance to the source is not well-constrained, with estimates
lying between 25 and 61 kpc (Casares et al. 2009).

Monitoring with the Swift/BAT detected a new outburst of
GS 1354—645 in 2015 June (Miller et al. 2015). Better-known,
recurrent sources like GX 339—4 often show multiple spectral
states, but GS 1354—645 is interesting in that only the “hard”
state was observed in its last outburst. GS 1354—645 may
therefore belong to a small sub-class of black hole transients
including the better-known GRO J0422+32 and XTE J1118
4480 (Brocksopp et al. 2001). Disk reflection was clearly
required in RXTE spectra of the 1997 outburst of GS 1354
—645 (Revnivtsev et al. 2000), potentially indicating a means
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Figure 1. The Swift/BAT light curve of the 2015 outburst of the black hole GS 1354—645. The data points represent the average flux over a span of one day. The red,
dashed, vertical lines indicate the start time of the two NuSTAR observations considered in this work, referred to as Obs. 1 and Obs. 2. The outburst is qualitatively

consistent with a fast rise, exponential decay (FRED) profile.

to study the black hole and innermost accretion flow in a “hard
state” transient. We therefore requested observations with
NuSTAR.

2. DATA REDUCTION

We obtained two NuSTAR observations of GS 1354-645
during its 2015 outburst. The first observation was made on
2015 June 13 (hereafter Obs. 1), starting at 06:56:07 (UT). It
achieved a net exposure of 24 ks. The second observation
(hereafter Obs. 2) was made roughly one month later, on 2015
July 11, starting at 13:41:08 (UT). Obs. 2 achieved a net
exposure of 29 ks.

Data reduction was performed using the routines in
HEASOFT version 6.16 and the associated NuSTAR calibration
files (version 20150316). The nuproducts routine was run to
extract source light curves, spectra, and responses, as well as
background spectra. FPMA and FPMB source events were
extracted using a 148 arcsec (radius) circle, centered on the
source. Background events were extracted from a region of
equivalent size in a source-free region.

3. ANALYSIS AND RESULTS

Figure 1 shows the light curve of the entire outburst, based
on public monitoring observations made with the Swift/BAT.
In qualitative terms, the outburst has a “fast rise, exponential
decay” or FRED profile. The points at which Obs. 1 and Obs. 2
were made are indicated. Observation 2 was obtained at a flux
~5 times higher than Obs. 1; this is reflected in the signal-to-
noise ratios (S/N) of the respective resultant spectra.

The spectra were analyzed using XSPEC version 12.8.2
(Arnaud 1996). Fits were made across the full NuSTAR band
(3-79keV). Spectra from the FPMA and FPMB were fit
jointly, allowing a multiplicative constant to act as a flux
normalization factor. The spectra from both observations were
grouped to require a minimum of 30 counts per bin to ensure
the validity of the ? fit statistic (Cash 1979; Gehrels 1986). All
errors reported in this work reflect 1o confidence limits.

The 3 keV lower energy limit of NuSTAR is not suited to
constraining the column density of the ISM along the line of
sight to a source, when its value is low or moderate. A value of

Ny = 7 x 10*' cm~? is suggested by the HEASARC column
density tool, based on Dickey & Lockman (1990). This value
was fixed in all fits to the spectra of GS 1354—645, using the
“tbabs” model (Wilms et al. 2000).

We initially considered a canonical spectral model consisting
of separate additive components, diskbb (Mitsuda et al. 1984)
and a power-law. Neither observation requires the disk
blackbody component. It is possible that the disk temperature
is simply too low to be detected in the NuSTAR band (see, e.g.,
Reis et al. 2010; Reynolds & Miller 2013).

However, the simple power-law component does not achieve
a formally acceptable fit to either spectrum. The fit to the lower-
sensitivity spectrum from Obs. 1 measured a power-law index
of I' = 1.369(4), but only achieved x?/v = 2006.50/1747 =
1.149 (where v is the number of degrees of freedom in the fit).
The spectrum of Obs. 2 is steeper, with I' = 1.528(1) in this
simple fit, and a very fit statistic result owing to the improved
S/N: x2/v = 9904.9/2740 = 3.615.

These simple fits are shown in Figure 2. The data/model
ratio from each fit shows residuals that are consistent with disk
reflection, including Fe K emission and a Compton back-
scattering excess peaking in the 20-30 keV range. The ratio
from Obs. 2 is consistent with blurred reflection from an inner
disk that extends close to the black hole, similar to the features
observed in the low/hard state of GRS 19154105 (see Miller
et al. 2013a).

We next considered fits with re1xi11 (version 0.4c; Garcia
et al. 2013; Dauser et al. 2014). This model includes the power
law that illuminates the disk and also incorporates a Kerr
blurring function to translate from the frame of the accretion
disk to the frame of the observer. It is this function that
measures the strong Doppler shifts and gravitational redshifts
imprinted on the reflection spectrum.

Spin is measured directly using relxill, within the
bounds —1 < a < 1. The inclination of the inner disk—not
necessarily the same as the binary system—is also measured
directly. For these parameters, values obtained in fits to Obs. 2
were assumed in fits to Obs. 1, owing to its lower sensitivity.
Relxill also allows the inner disk to deviate from the ISCO
for a given spin parameter, so we also allowed the parameter
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Figure 2. NuSTAR spectra of GS 1354—645, fit with a fiducial power-law continuum. The FPMA is shown in black, the FPMB is shown in red, and the model for the
FPMA is shown in blue. The data in each panel have been rebinned for visual clarity. Left: the spectrum of Obs. 1 is shown. Right: the spectrum of Obs. 2 is shown.
This ratio reveals evidence of strong, broadened reflection consistent with illumination of the inner accretion disk.

R;, to vary (the model has a hard upper limit of 1000 Risco) in
fits to both observations.

The emissivity of the disk is described as a broken power
law in radius (e.g., J o< r~7), giving three parameters: gin, Gout
and Ryeak. Any corona with an energetic profile defined by the
underlying potential and linked to the disk is likely to have a
time-averaged emissivity that falls with radius, so we require
g 2 0 in fits to both observations. The limited sensitivity of
Obs. 1 does not permit more detail to be discerned, so we
simply fixed g, = ¢,,, obviating the meaning of Ry, For
Obs. 2, however, additional constraints can be imposed based
on theoretical and observational expectations. Wilkins &
Fabian (2012) have calculated the emissivity profiles expected
for idealized point source scenarios, including a “lamp-post”
geometry. All calculations assume a disk that extends to the
ISCO. The predicted profiles are complex and a power law with
a single break radius is a relatively crude approximation. Inner
emissivity profiles steeper than g = 3 (Euclidean) are only
expected in a Kerr geometry, so we have enforced a
Rireak < 6GM /c* in all fits. The sensitivity afforded by
NuSTAR observations of stellar-mass black holes also suggests
very small inner disk radii and steep emissivity indices (e.g.,
Miller et al. 2013a; 2015; Parker et al. 2014; Tomsick
et al. 2014).

In addition, we measured the following continuum and
reflection parameters using relxill: the power-law index I,
the flux normalization of the model, the cutoff energy of the
power law (E.y; a hard upper limit of 1000 keV is fixed within
the model), the reflection fraction (f,.q, the ratio of reflected to
incident flux), the iron abundance (Ag.; a hard lower limit of
0.5 < Ap. is fixed within the model), and the ionization of the
accretion disk (¢ = L/nr?, where L is the ionizing luminosity,
r is the distance between the source and reflector, and 7 is the
density of the reflecting medium).

The results of fits to the spectra obtained in Obs. 1 and Obs.
2 with relxill are detailed in Table 1 and shown in
Figure 3. Owing to the much higher S/N of Obs. 2, we fit this
spectrum first. The black hole spin, inner disk inclination, and
iron abundance measured in Obs. 2 were then frozen in fits to
Obs. 1.

Table 1

Spectral Fitting Results
Parameter Obs. 1 Obs. 2
Gin 1) 9(D)
Gout =Yin 0.0+0_4
Rbreuk e 5(1)
a (cJ/CM?) 0.998" 0.998_0.009
i (degrees) 75 75(2)
Rin (Risco) 7001500 1075003
T 1.46(1) 1.635(7)
log(&) 0.3(3) 2.37(3)
Afe 0.57* 0.57(3)
E.y (keV) 1000_209 150(5)
Seent 0.50(7) 1.5(1)
Norm. (1073) 3.8(2) 8.4(2)
x2/v 1890.2/1742 2753.0/2730
Flux 3-79 keV, 10~ erg cm~2s~ ") 1.01(1) 5.6(1)
Flux (0.5-100 keV, 10~ erg cm~25~") 1.28(1) 6.9(1)

Note. The results of spectral fits to NuSTAR observations of the black hole
X-ray binary GS 1354—645. The “relxill” model (Garcia et al. 2013; Dauser
et al. 2014) was used to describe the combination of the direct and reflected
spectra. The fits to Obs. 1 fix the parameters marked with an asterisk at the
values measured in Obs. 2. The inner disk inclination is described in terms of i.
The R;, parameter is measured in units of the ISCO radius for the spin
parameter a and allows for the possibility that the disk is not truncated exactly
at the ISCO. Please see the text for details concerning the emissivity indices ¢
and break radius Ry, The power-law index is noted by I'. The log of the
ionization parameter, the abundance of Fe relative to solar, and the power-law
cutoff energy are listed as log(§) , Ap., and Ey, respectively. The reflection
fraction and flux normalization of “relxill” are listed as f.; and Norm.,
respectively. Last, the unabsorbed flux in the spectral fitting band, as well as a
broader band, are listed based on these fits.

Far better fits are achieved with relxill (x2/v = 2753.0/
2730 = 1.008 for Obs. 2, and x2/v = 1890.2/1742 = 1.085
for Obs. 1). Most importantly, a very high black hole spin
parameter is measured in Obs. 2: a = 0.998_g 9. With the
sensitivity of NuSTAR, statistical errors on spin can be small,
but systematic errors are likely much larger (see below). The
inclination of the inner disk is also very tightly constrained:
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Figure 3. NuSTAR spectra of GS 1354—645, fit with the “relxill” relativistically blurred disk reflection model. The FPMA is shown in black, the FPMB is shown in
red, and the model for the FPMA is shown in blue. The data in each panel have been rebinned for visual clarity. Left: the spectrum of Obs. 1 is shown. The data are
consistent with reflection from a radially truncated accretion disk. Right: the spectrum of the brighter Obs. 2 is shown. The best fit requires a very high black hole spin

parameter.
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Figure 4. NuSTAR spectra from Obs. 1 (black) and Obs. 2 (red), after removing blurred disk reflection from the models detailed in Table 1. The unmodeled Fe K line
in Obs. 2 extends down to 4-5 keV, consistent with a disk close to the ISCO around a spinning black hole. In contrast, the unmodeled Fe K line in Obs. 1 is relatively
narrow. Only the FPMA spectra are shown, the ratio from Obs. 1 is multiplied by a factor of 1.4, and the data were binned for visual clarity.

i = 75(2) degrees. Since spin and inclination both work to blur
the reflection spectrum, it is important to ensure that the values
are not degenerate. Both parameters are tightly constrained, and
there appears to be no degeneracy. The inner disk radius is
found to be consistent with the ISCO and tightly constrained:

= 1.07"3% Risco. This again indicates a disk that extends
Very close to the black hole.

In contrast to Obs. 2, fits with relxil1 indicate that the
accretion disk did not extend close to the black hole in Obs. 1.
The inner disk radius hits the limit of the model,
Ry, = 700f§88 Risco. This is indicated by the much narrower
line in Obs. 1 (see Figures 2 and 4). The statistical certainty of
this result is low; an inner radius of 80 Rjgco is within the 90%
confidence range. We note that the Fe K line is not ideally fit,
based on the data/model ratio in Figure 3; this may imply that
the disk is truncated at a larger radius than allowed within the
relxill framework. The addition of a simple Gaussian with an
energy fixed at £ = 6.40 keV improves the fit at the 30 level of
confidence.

Although the reflection fraction in Obs. 1 is lower than in
Obs. 2 (fi.q = 0.50(7) versus f.4 = 1.5(1)), it is still fairly

high for a compact corona and a much larger inner disk radius.
A high reflection fraction and a relatively flar emissivity index
in Obs. 1 may be nominally consistent with a large corona that
partially blankets the disk, but a standard emissivity profile
(g = 3) is allowed by the data at the 90% confidence level.

4. DISCUSSION AND CONCLUSIONS

We have analyzed two NuSTAR spectra of the dynamically
confirmed black hole GS 1354—645. Both observations were
obtained in the “low/hard” state. When fit with a relativistic
reflection model, the spectrum obtained close to the outburst
peak suggests a high spin parameter and also implies that the
inner disk may be viewed at a high inclination. The spectrum
obtained at a lower flux level suggests that the inner disk may
have been truncated, potentially consistent with radiatively
inefficient accretion flow models. In this section, we discuss the
strengths and weaknesses of our results, potential sources of
systematic errors, and impacts on our understanding of GS
1354—645.

Fits to Obs. 2 with relx1i11 indicate that the accretion disk
likely extends very close to the black hole. This is now
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common in the most luminous phases of the “low/hard” state,
especially at the sensitivity afforded by NuSTAR (see, e.g.,
Miller et al. 2015). The data strongly require a very high spin
parameter, a = 0.998_g g9, consistent with the extreme upper
bound of the model. The error is merely the statistical error, and
systematic errors are likely to be much larger.

All measures of black hole spin obtained through the
accretion disk rely on the optically thick reflecting gas obeying
the test particle ISCO. Simulations suggest that the disk is
likely to be thin and to obey the ISCO at Eddington fractions
below 0.3 (Reynolds & Fabian 2008; Shafee et al. 2008); for
plausible combinations of black hole mass and distance, this
condition was met in our observations. It is quite possible,
however, that no astrophysical disk respects the ISCO at the
percent level.

The best-fit model for Obs. 2 yields parameters similar to
those expected in a “lamp-post” geometry (a compact, central
source of hard X-rays located on the spin axis above the black
hole). The relxilllp model (Garcia et al. 2013; Dauser
et al. 2014) explicitly assumes this geometry and calculates the
reflection fraction self-consistently; it also gives a high spin
parameter (a > 0.85). However, our best-fit model (see
Table 1) is superior at the 6.60 level of confidence, as
determined by an F-test (for relxilllp, x2/v = 2806/
2733, even if the reflection fraction is not linked to the lamp-
post value). This might imply that the corona is indeed compact
but not quite an idealized lamp-post. Recent work has noted
some physical difficulties with idealized lamp-post models
(e.g., Niedzwiecki et al. 2016; Vincent et al. 2016).

Stiele & Kong (2016) have reported a nearly maximal
retrograde spin based on a short XMM-Newton observation of
GS 1354—645. A combination of factors including calibration
uncertainties in the EPIC-pn camera and photon pile-up may
have acted to falsely narrow the reflection features in the XMM-
Newton spectrum (Miller et al. 2010). It is also possible that the
disk was mildly truncated during the XMM-Newton observa-
tion. Fits to NuSTAR Obs. 2 with a < 0.93 are rejected at the
50 level of confidence, via an F-test.

Our reflection modeling also indicates that the inner disk is
viewed at a relatively high inclination, i = 75(2) degrees. This
is within the eclipse limit derived by Casares et al. (2009). It is
possible that the inner disk is not aligned with the inclination of
the binary system itself (Maccarone 2002; also see Tomsick
et al. 2014).

Systems that narrowly avoid eclipses are often observed to
exhibit “dips” in their X-ray light curve. These events may be
due to vertical structures in the outer accretion disk that block
some of the light from the central engine (see, e.g., Diaz-Trigo
et al. 2006). We did not detect any dips in the light curve of GS
1354—645, possibly indicating that the inclination of the outer
disk must really be lower than the value derived for the inner
disk via reflection. However, dips may only be manifested at
higher Eddington fractions (see, e.g., Kuulkers et al. 2000) than
the luminosities inferred in our NuSTAR exposures.

Esin et al. (1997) predict that the inner accretion flow will
become advection-dominated and radiatively inefficient at
Eddington fractions below 0.01. In the 0.01-0.08 Lgq4q range,
the inner disk may still be truncated but the inner flow can be

EL-BATAL ET AL.

more luminous. For GS 1354-645, assuming a distance at the
lower limit of d = 25kpc and mass at the lower limit of
M = 7.6 M, the luminosities based on the flux values in
Table 1 would be 0.1 Lgggq and 0.53Lgqq for Obs. 1 and Obs. 2,
respectively. Smaller distances (d < 10 kpc) would more easily
accommodate the lower end of the luminosity range at which
thin disks may truncate. Alternatively, some combinations
including very high black hole masses (M > 90 M) can also
meet the prediction, but these prescriptions greatly exceed the
range of black hole masses inferred in X-ray binaries (e.g.,
Remillard & McClintock 2006).

We thank the anonymous referee for comments that
improved this manuscript. This work was supported under
NASA contract No. NNGOSFD60C, and made use of data from
the NuSTAR mission, a project led by the California Institute of
Technology, managed by the Jet Propulsion Laboratory, and
funded by NASA.
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