Redox-Sensitive liposomes for glioblastoma treatment.

Lund, Mette Aagaard; Bak, Martin; Kamaly, Nazila; Andresen, Thomas Lars

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Redox-Sensitive Liposomes for Glioblastoma Treatment

Mette A. Lund, Martin Bak, Nazila Kamaly, Thomas L. Andresen

Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, Building 423, 2800 Kgs. Lyngby, Denmark

Introduction

Treatment of glioblastoma remains a challenge due to inability of the drug to reach the intracellular target. Invasive glioblastoma is associated with high grade vascularization and break-down of the blood-brain barrier (BBB), which could aid in delivering drugs to the tumor site. However, once at the tumor site, the drug has to be internalized and transported to the specific target.

The aim of the current project is to develop a drug delivery system (DDS) that crosses the permeable BBB to specifically target invasive glioblastoma cells and thereby facilitate uptake. Furthermore the DDS will be activated in the tumor environment to escape the endosome and drug efflux mechanisms, thereby transporting the drug to the intracellular target. The DDS consists of a positively charged liposome formulation and redox-sensitive lipopeptides (RSLs) or non-cleavable lipopeptides (nCL) with a PEG-linker that shield the positive charge. For intracellular cleavage a cell-penetrating (CP) moiety (8-arginines or 8R) is furthermore included. The chemotherapeutic drug Doxorubicin (DOX) is loaded into the DDS for cytotoxicity experiments. The DDS concept and components are shown in Figure 1.

Results

HPLC analysis (Figure 2A) showed that the intact lipopeptide eluted after 13 minutes. Treatment with 10 equimolar DTT to RSL resulted in 100 % of the RSLs being cleaved (one peak at 8 minutes), while treatment with 1 equimolar DTT resulted in the fully cleaved peak and an extra peak, which was believed to be the cleaved RSL with DTT still attached. Charge reversal was proven by zeta-potential measurements of the RSL liposomes prior to and after treatment with DTT (Figure 2B). A cleavage experiment (Figure 2C) indicated that the cleavage kinetics of RSL001, RSL002, and RSL003 was different with RSL001 and RSL003 being cleaved faster than RSL002 and RSL003 showing less tendency to create the DTT intermediate. Charge reversal was proven by zeta-potential measurements of the RSL liposomes prior to and after treatment with 10 equimolar DTT to RSL resulting in 100 % of the RSLs being cleaved (one peak at 8 minutes), while treatment with 1 equimolar DTT resulted in the fully cleaved peak and an extra peak, which was believed to be the cleaved RSL with DTT still attached.

Conclusion and Perspectives

It has been shown that RSLs can be successfully post-inserted into liposomes, thereby changing the charge and the uptake properties of the liposomes. Furthermore, cleavage of the RSLs can restore the initial properties of the liposomes. Cleavage of the three RSLs indicated different cleavage kinetics and more investigations into these kinetics and the impact on uptake will be undertaken. In the unsaturated formulation the RSLs were not cleavable after storage and the stability of the RSLs in unsaturated and saturated formulations will therefore be investigated.