Spray Drying of Cubosomes for Oral Vaccine Delivery

von Halling Laier, Christoffer; Abid, Zarmeena; Weydahl, Ingrid Elise Konow; Rades, Thomas; Boisen, Anja; Nielsen, Line Hagner

Publication date: 2016

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spray Drying of Cubosomes for Oral Vaccine Delivery

Christoffer von Halling Laier¹, Zarmeena Abid¹, Ingrid E.K. Weydahl¹, Thomas Rades², Anja Boisen¹, Line Hagner Nielsen¹
¹Department of Micro and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
²Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

METHOD

The spray dried powder was heated to 90°C for 24h. This
• Reduced electrostatic charges in the powder
• Allowed easy reconstitution to a colloidally stable
 suspension
• Induced weight loss of 8%
The powder was rich in cubosomes after reconstitution (Fig. 2)

RESULTS

Table 1: Size and zeta-potential of cubosomes with and without adjuvant as measured by dynamic light scattering in Milli-Q water. Mass median aerodynamic diameter (MMAD) measured by time-of-flight mass spectroscopy.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Size (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
<th>MMAD (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubosomes with OVA</td>
<td>256±10</td>
<td>0.42</td>
<td>-31.7±1.4</td>
<td>4.1±0.4</td>
</tr>
<tr>
<td>Cubosomes with OVA and Quil A</td>
<td>233±13</td>
<td>0.24</td>
<td>-38.3±1.7</td>
<td>4.1±0.02</td>
</tr>
</tbody>
</table>

Table 2: OVA content in formulation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OVA content in powder</td>
<td>20.3±0.5 µg/mg</td>
</tr>
<tr>
<td>OVA load in particles</td>
<td>5.1±0.1% wt</td>
</tr>
</tbody>
</table>

Particle Characterization

Loading into microcontainers

Microcontainers were fully and homogenously filled with cubosome powder by an embossing method. The microcontainers offer the possibility to protect the formulation during passage through the stomach and provide release of the cubosomes in the intestine.

CONCLUSION

The developed cubosomes show properties suitable to be used for oral vaccine delivery in microcontainers.