High-throughput epitope profiling of snake venom toxins
unveiling the complexity of antigen-antibody interactions of antivenoms

Engmark, Mikael; Andersen, Mikael Rørdam; Laustsen, Andreas Hougaard; Patel, Jigar; Sullivan, Eric; De Masi, Federico; Hansen, Christian Skjødt; Kringelum, Jens Vindahl; Lomonte, Bruno; Gutiérrez, José María

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
High-throughput epitope profiling of snake venom toxins – unveiling the complexity of antigen-antibody interactions of antivenoms

Mikael Engmark1,2, Mikael R. Andersen2, Andreas H. Laustsen2,3, Jigar Patel4, Eric Sullivan4, Federico de Masi1, Christian S. Hansen1, Jens V. Kringelum5, Bruno Lomonte2, José María Gutiérrez2, and Ole Lund1

Introduction

Insight into the molecular details of polyclonal antivenom antibody specificity is a prerequisite for accurate prediction of cross-reactivity and can provide a basis for design of novel antivenoms1. In this work, a high-throughput approach was applied to characterize linear epitopes in toxins from four African mamba and three neurotoxic cobra snakes obtained from public databases.

Key residues for antivenom toxin recognition

Antivenoms antibodies bind to functional sites of toxins

Conclusions

Custom-designed high density peptide microarray technology enables parallel automated identification of linear elements of epitopes in snake neurotoxins.

Trend: antivenom antibodies recognize and bind to epitopes at the functional sites of toxins.

Perspectives

Determination of linear elements in snake venom toxin epitopes may provide the basis for:

- Explaining the molecular basis of antivenoms para-specificity
- Guiding next-generation antivenoms based on DNA immunization and immunization with synthetic epitope strings6

Affiliations

1. Technical University of Denmark, Department of Bio and Health Informatics, Aas, Langelby
2. Technical University of Copenhagen, Department of Biotechnology and Bioscience, Aas, Langelby
3. University of Copenhagen, Department of Design and Pharmacology, Faculty of Health and Medical Sciences, Denmark
4. Rochester Institute of Technology, Rochester, USA
5. Instituto Clodomiro Picado, Facultad de Medicina, Universidad de Costa Rica, San José

References


Acknowledgement

We would like to thank Morten Nielsen for scientific discussion and the Novo Nordisk Foundation for financial support (grant number NNF13OC0005613)