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We have studied the behavior of micro four-point probe (M4PP) measurements on two-dimensional
(2D) sheets composed of grains of varying size and grain boundary resistivity by Monte Carlo based
finite element (FE) modelling. The 2D sheet of the FE model was constructed using Voronoi tessella-
tion to emulate a polycrystalline sheet, and a square sample was cut from the tessellated surface.
Four-point resistances and Hall effect signals were calculated for a probe placed in the center of the
square sample as a function of grain density n and grain boundary resistivity qGB. We find that
the dual configuration sheet resistance as well as the resistance measured between opposing edges of
the square sample have a simple unique dependency on the dimension-less parameter

���
n

p
qGBG0,

where G0 is the sheet conductance of a grain. The value of the ratio RA=RB between resistances mea-
sured in A- and B-configurations depends on the dimensionality of the current transport (i.e., one- or
two-dimensional). At low grain density or low grain boundary resistivity, two-dimensional transport
is observed. In contrast, at moderate grain density and high grain resistivity, one-dimensional trans-
port is seen. Ultimately, this affects how measurements on defective systems should be interpreted in
order to extract relevant sample parameters. The Hall effect response in all M4PP configurations was
only significant for moderate grain densities and fairly large grain boundary resistivity. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4963719]

I. INTRODUCTION

The seminal work on graphene1 has fueled a strong
interest into synthesis, characterization, and application of
graphene as well as other two-dimensional (2D) materials.
However, commercialization of graphene based applications
decidedly calls for the development of reliable methods of
producing high quality graphene and non-destructive meth-
ods to electrically characterize it.2 Synthesis of graphene
using chemical vapor deposition (CVD) has shown great
promise,3,4 yet still contains a wide range of defects com-
pared to its mechanically exfoliated counterpart. These
defects include vacancies, physi- or chemisorbed adatoms,
lattice imperfections, substitutional atoms, and electron-hole
puddles as well as extended defects which include folds,
cracks, and grain boundaries (GBs). GBs are presently ubiq-
uitous in CVD processed material since the technique relies
on stitching together—initially separate—grains in order to
achieve larger coherent sheets.5 Both theoretical6,7 and
experimental studies8,9 on transport through graphene GBs
found that GBs cause potential barriers for the carrier trans-
port and result in an increase in resistance, which sometimes
is 30 times larger than the bulk graphene resistance at the
center of the grain.10–12 Thus, the GBs are significantly

deteriorating the electrical properties of the films, which in
turn affect the performance of graphene based devices, e.g.,
field-effect transistors.13

Micro four-point probe (M4PP) metrology has previ-
ously been used for non-destructive electrical characteriza-
tion of graphene films.14 M4PP metrology can be used to
measure the sheet resistance (or sheet conductance), and in
addition, the method allows for extraction and evaluation of
geometry related parameters such as the resistance ratio15,16

and the Hall effect signal caused by the Lorentz force.17

In previous work,18 we developed a finite element (FE)
model to investigate how the M4PP signature differs for
measurements on 2D and quasi-1D materials; these signa-
tures had already been observed experimentally.15,16 We suc-
cessfully validated the FE approach by comparing
calculations for a single line defect to the analytical result.19

The model was limited in its scope since only samples with
insulating line defects were studied, which may be a reason-
able representation of 2D materials in which current trans-
port is dominated by transfer defects such as rips and tears.
However, with improvements in fabrication of 2D materials,
today transfer defects can now often be neglected. The FE
model proposed here is well suited for simulating M4PP
measurements on 2D materials fabricated by chemical vapor
deposition in which current transport is dominated by intra-
grain conductance and domain boundary resistance. Thea)Electronic mail: dirch.petersen@nanotech.dtu.dk.
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model is also more comprehensive than the previous one, as
it also includes an applied magnetic field such that Hall
effects can also be extracted. The model is coupled with a
Monte Carlo approach so that an unbiased correlation
between surface composition and the parameters extracted
from the M4PP measurement can be studied.

We begin our study by defining the four-point notation
we use and a detailed description of the FE model. Then, we
continue to examine the simulation results by comparing the
effective sheet conductances obtained from M4PP and a
square electrode setup, which are shown to largely agree and
follow a predicted dependency on grain boundary resistivity
and grain density. We proceed to study the distribution of
simulated RA=RB ratio as grain boundary resistivity and grain
density are varied, from where it becomes apparent how
important the relative grain size to probe pitch is in affecting
the dimensionality of the current transport. Finally, we study
the effect of grain boundary resistivity and grain density on
the magnitude and distribution of the Hall signal.

II. FOUR-POINT PROBE DEFINITIONS

A four-point probe has 24 possible electrode configura-
tions, 18 of which can be disregarded as they arrive from triv-
ial interchanging of current direction and/or potential pins.
The three remaining configurations in addition to their conju-
gate configurations (where the current pins and voltage poten-
tial pins are interchanged) make up what is known as the
electrode configurations A, B, and C (A0, B0, and C0 for their
respective conjugate configurations). In the A configuration,
the current is applied between pins no. 1 and 4 (pin labels for
the collinear four-point probe are illustrated in Fig. 1), while
the electrical potential is measured between pins no. 2 and 3
such that the resistance becomes RA … V23=I14. In the B con-
figuration, the current is sourced between pins no. 1 and 3,
while pins no. 2 and 4 measure the electrical potential
(RB … V24=I13), and finally, in the C configuration, pins no. 1
and 2 apply the current while pins no. 3 and 4 measure the
potential (RC … V43=I12). The conjugate configurations are
found by interchanging current-carrying pins with the voltage-
sensing pins.

It is convenient to define the average resistance,
�Ri … ðRi þ Ri0 Þ=2, and resistance difference, DRi … Ri � Ri0 ,
and where i 2 A; B; C. The Hall effect signal DRi is propor-
tional to the Hall sheet resistance RH and is affected by the
geometry, i.e., the proximity of boundaries obstructing cur-
rent transport. The average resistance �Ri depends on the
sheet resistance including geometrical magnetoresistance.17

For a sample with a highly non-uniform conductance
and samples that are not simply connected, it is furthermore
convenient to redefine the configuration resistances such that

�R ~A � maxðj �RijÞ ; �R ~C � minðj �RijÞ ; �R ~B � �R ~A � �R ~C :

This definition ensures that a dual configuration van der Pauw
conductance always can be found and it limits the modified
resistance ratio to the closed interval �R ~A= �R ~B 2 ‰1; 2�, as
opposed to �RA= �RB 2 ��1; 1‰. The redefinition of configura-
tions only matters in the event of highly non-uniform samples,
e.g., in the presence of a large number of insulating defects in
proximity of the electrodes. In such cases, either of the resis-
tance ratios �RA= �RB; �RA= �RC or �RB= �RC could become unity.
With the configuration redefinition, �R ~A= �R ~B will itself become
unity in cases where any of the values j �RAj; j �RBj or j �RCj
approaches zero.

The van der Pauw equation for collinear four-point
probes in terms of the redefined configurations becomes20

exp ð2p �R ~A
~GsÞ � exp ð2p �R ~B

~GsÞ … 1; (1)

which relates the average measured resistances in the ~A and
~B configurations to an apparent sheet conductance ~Gs, which
in case of a perfect sample equals the effective sheet conduc-
tance Gs and also the internal grain sheet conductance G0.
Note that Eq. (1) is not valid in the case where �R ~A= �R ~B … 1
(1D conduction).

III. FINITE ELEMENT MODEL

The FE model was assembled in COMSOL Multiphysics
5.1 using the “ACDC” physics-module and includes a 10s-by-
10s 2D film (s is the probe pitch) with an M4PP at its center as
illustrated by the example in Fig. 1. The relatively small size of
our model ensured a fairly short simulation time with the trade-
off being that for the case of a perfect 2D conductor (no
defects) �R ~A= �R ~B … 1:2079, instead of its well-known value on
an infinite, perfect sample; �R ~A= �R ~B … lnð4Þ=lnð3Þ � 1:2619.15

The FE model consists of multiple components, as visu-
alized by the simulation layout shown in Fig. 2. The black
dots represent the seeds from which the 2D film was tessel-
lated using a Voronoi diagram,21 thus partitioning it into
cells that closely resemble grains grown in a CVD process.
At the beginning of each simulation, the seeds were initially
distributed in a regular grid with one seed at each grid point,
and subsequently, a random displacement in the x- and y-
directions, with a maximum displacement of half the grid
spacing, was added to each seed point. This seed layout
ensured that the grain density, n, accurately reflects the simu-
lated system both globally and locally. The shaded square at
the center of the model encloses the area included in the sim-
ulation. From one simulation to the next, the position of the

FIG. 1. Illustration of an M4PP probing a surface comprised grains and
GBs. The surface colormap shows the magnitude of the electrical potential
with the probe in its A configuration. The four probe pins are distinguished
by labels (1–4).
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shaded square shifted randomly within the area outlined by the
dashed line. This was done in order to obtain a higher degree
of randomness between each simulated system and to avoid
slight grain density deviations inherent to the Voronoi tessela-
tion when approaching the boundary of the seeded region (out-
lined by the black rim); this was particularly important in low
grain density systems. At the center of the shaded square, four
equally spaced white dots show the positions of the four probe
pins. This symmetric position of the M4PP ensures that in
the case of a perfect uniform film, dual configuration measure-
ments yield the sheet conductance of the material,22 i.e.,
~Gs … G0 and that the Hall signals vanish,17 i.e., DRi … 0.

In addition to M4PP measurement calculations, the
model was also adapted to allow calculations of the effective
sheet conductance as illustrated in Fig. 2 (right). The conduc-
tances between iso-potential electrodes on opposing sides of
the square sample, GNS and GEW, were calculated for the
two configurations shown, and the geometric mean reported
as the effective sheet conductance Gs.23,24

Initially, a coarse triangular mesh was applied; then two
adaptive mesh refinement steps followed to optimize the mesh
by increasing the mesh resolution in locations with large
potential gradients, such as close to the current inlets. As
shown in our previous publication,18 two mesh-refinement
steps were sufficient to ensure a relative error of less than 1%
of the fully converged solution. For questions concerning the
validity of this method of modelling M4PP measurements, we
also refer to a previous publication, Ref. 19, where simula-
tions on a simple system containing just a single line defect
were compared to the analytical result.

A. Calculations

For each Voronoi tessellation with a given grain density
n, square samples of 10 � 10s2 were cut and M4PP

resistances for all 6 configurations, A, B, C, A0, B0 and C0,
calculated for each setting of the grain boundary resistivity.
The sheet resistance of a single grain was kept at R0 � 1=G0
… 1 X, which defines the resistance scale used. Note, the spe-
cific value of R0 is irrelevant; however, in order to simulate
the problem numerically, we have to assign a value to it.

The grain boundary resistivity, qGB (unit X m), was scaled
in units of R0s, since we have chosen the probe pitch s as the
length scale in our calculations. In the calculations, we have stud-
ied grain boundary resistivities in a range of six orders of magni-
tude, from almost completely transparent (qGBG0s�1 … 10�3) to
almost completely insulating (qGBG0s�1 … 103). By transparent,
we signify that current passes the boundary with an insignificant
potential drop.

Hall effect was included in the calculations by specify-
ing the two-dimensional conductance tensor of the material;
the diagonal elements were set to G0 … 1 S as explained
above, while the off diagonal elements were set to 6GH with
GH … G0lHBz, where lH is the Hall mobility and Bz is the
magnetic flux density normal to the surface. In the calcula-
tions, the product of Hall mobility and magnetic flux density
was fixed at lHBz … 0:01. A relatively small value of lHBz
was chosen to minimize the magnetoresistance effect, which
could complicate interpretation of the results. It follows that
the Hall sheet resistance becomes RH � 0:01 X.

IV. RESULTS

A. Effective sheet conductance

The effective sheet conductance Gs is the most impor-
tant parameter in many applications, and it is therefore
important to see how Gs varies with grain density and GB
resistivity; both when Gs is extracted from M4PP measure-
ments and when measured on a square sample with source
and drain electrodes on opposing sides.

Consider a rectangular resistor sample of length L and
width W, which is completely filled with identical square
grains of density n. In this resistor, intra-grain transport con-
tributes R0L=W to the total effective sheet resistance, while the
current has to pass L

���
n

p
grain boundaries of width W, and

therefore, the grain boundaries contribute ðqGB=WÞL
���
n

p
to

the total effective sheet resistance, which then becomes
Rs … ðR0 þ qGB

���
n

p
ÞL=W, reminiscent of the expression given

in Ref. 9. It follows that the expected effective sheet conduc-
tance normalized to the intra grain sheet conductance becomes

Gs

G0
…

1
1 þ

���
n

p
qGBG0

; (2)

and thus depends only on a single dimension-less parameter���
n

p
qGBG0. Even though the equation is derived under these

very simplified conditions, we are of the opinion that it has a
more general validity; however, we have not yet found any
analytical proof.

Figure 3 shows the mean normalized apparent sheet con-
ductance calculated using Eq. (1) for the M4PP as well as
the mean effective sheet conductance calculated for a square
setup. The sheet conductance data are shown as a function of
the dimension-less parameter

���
n

p
qGBG0 representing large

FIG. 2. Sketch of the FE model and the two measurement setups used. The
black dots represent seeds from which the Voronoi tessellation is drawn. The
shaded square at the center shows the part of the tessellated surface included
in the simulation. The dashed line outlines the area that the shaded square can
occupy by shifting its position. In the M4PP setup (left), the four white dots at
the center of the shaded square show the locations of the four probe pins. In
the square setup (right), the effective sheet conductance Gs was calculated as
the geometric mean of conductances found in the two configurations, NS and
EW, respectively, given by Gi … Ii=Vi, where i 2 NS; EW.
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variations in both grain density n and GB resistivity qGB. We
see that the majority of the mean sheet conductance data fol-
lows a single unique curve in perfect agreement with Eq. (2).
For low grain density systems, n … ‰0:01s�2; 0:25s�2�, the
four-point measurements are expected to deviate from the
analytical model, Eq. (2), as the M4PP is likely to measure
either within a single grain or across a single grain boundary
giving rise to extreme values.

In the square setup, this is less likely to occur since the
distance between electrodes is much larger (10 � 10s2); this
explains why a similar deviation is not observed for the
square setup, i.e., the measured conductance is averaged
over a larger number of GBs and is given as the geometric
mean of NS and EW configurations as illustrated in Fig. 2.
The fact that data points from the square setup and M4PP
data points are almost identical show that the M4PP on aver-
age actually measures the effective sheet conductance even
on samples with a high grain boundary density.

B. Resistance ratio distribution

The resistance ratio �R ~A= �R ~B has previously been shown
to assume values that differ significantly between 2D and
quasi-1D materials,15,18,19 and here, we study the distribution
on the grainy material.

The histogram in Fig. 4 shows the distribution of the cal-
culated resistance ratios as a function of the grain density for
samples with weakly conductive grain boundaries (qGBG0s�1

… 10). The figure neatly captures the transitions between 2D
conductance at low grain density, e.g., n … 0:01s�2, quasi-
1D at moderate grain density, e.g., n … 0:25s�2, and 2D
conductance again at high grain density, e.g., n … 9s�2. At
n … 0:01s�2, only about 12% of the simulations yield �R ~A= �R ~B
… ‰1:0; 1:03�, identified here as a quasi-1D measurement
signature.15 As the grain density increases, the fraction of 1D
measurement signatures, i.e., �R ~A= �R ~B … ‰1:0; 1:03�, increases
to �50% at n … 0:25s�2 and n … 0:36s�2. Hereafter, the frac-
tion of 1D signatures rapidly declines until n … 9s�2, at which

point remarkably none of the simulations registered as quasi-
1D signatures. Initially puzzled by this observed behavior at
high densities, we soon arrived at the conclusion that this was
likely caused by a reduction in the probability of having two
pins isolated on the same grain. This also explains why we see
a peak at n … 0:25s�2 and n … 0:36s�2, as this is where this
probability is at its highest. When considering that in the limit
of extremely high grain densities, the sample essentially
becomes 2D-like again albeit with a lower overall sheet con-
ductance, this observed behavior of the resistance ratio distri-
bution re-approaching its 2D signature form, makes perfect
sense. It is very clear from this argument that the relative grain
size to probe pitch plays a decisive role in determining the
�R ~A= �R ~B outcome of an M4PP measurement.

Having initially focussed on comparing simulations with a
constant grain boundary resistivity of qGBG0s�1 … 10, we now
take a look at how the outcome of the simulations are affected
when changing the grain boundary resistivity from almost insu-
lating to almost transparent. Figure 5 shows histograms of resis-
tance ratios as a function of normalized grain boundary
resistivity (qGBG0s�1) for two grain densities, (a) n … 0:49s�2

and (b) n … 9:00s�2. At low grain boundary resistivity, we
observe a distinct peak around �R ~A= �R ~B … 1:2079 at both densi-
ties; we recognize this as the familiar 2D signature for the
10 � 10s2 sample. The peak soon disappears when qGBG0s�1

is increased, and then, we start to see a difference in behavior
between the two grain densities. In Fig. 5(a) for high values of
qGBG0s�1, a new distribution peak emerges at �R ~A= �R ~B … 1:0,
this is known as the 1D signature peak, while in Fig. 5(b), we
see a broadening of the original 2D signature peak until distinct
peaks are completely absent in the histogram. From this obser-
vation, we infer that the range of attainable values of �R ~A= �R ~B is
highly dependent on both the grain size and the degree to which
the GBs disturb the transport of electrons in the measured film.
Note also how �R ~A= �R ~B … 1:2079 is not a unique value exclu-
sively reserved for 10 � 10s2 2D conductors, since we observe
many simulations with this value even on material with grain

FIG. 3. Mean normalized sheet conductance, calculated using Eq. (1), and
its standard deviation (error bars) based on data collected from randomly
constructed M4PP and square setup simulations. It illustrates how both mod-
els tend to yield values that closely resemble the analytical model (solid
black line), with the exception of M4PP measurements of samples with low
grain density, n � 0:25s�2.

FIG. 4. Histogram of the calculated resistance ratio �R ~A = �R ~B collected from
randomly constructed simulations as a function of grain density n, with
almost insulating grain boundaries (qGBG0s�1 … 10). The axis labels “Low”
(n … 0:01s�2) and “High” (n … 9s�2) signify the two extremes in grain den-
sity relative to the electrode pitch squared.
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