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Finite Element Analysis of the Cross-section of Wind Turbine Blades; a 
comparison between shell and 2D-solid models 
 
Daniel R. Pardo and Kim Branner 
Wind Energy Department, Risø National Laboratory, DK-4000 Roskilde, Denmark. Email kibr@dtu.dk 
 
ABSTRACT 
A very detailed 2D-solid finite element model is developed representing the load carrying box girder of a 
wind turbine blade. Using typical geometrical values for the girder dimensions and public available material 
data, the overall cross-sectional behaviour is analysed for a simple compressive line load. The results are 
compared with result from similar shell models, which typically are used for practical design.  Usually, good 
agreement between the shell models and the detailed 2D-solid model is found for the deflections, strains 
and stresses in regions with loads from pure bending. However, large differences can exist in regions where 
the loading is dominated by shear. It is found that geometrical non-linearity starts to become important 
when deflections are of the same order as the laminate thickness. 
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1  INTRODUCTION 
Many modern wind turbine blades are constructed with a load-carrying box girder that supports the outer 
shell. The box girder usually extends from the root of the blade to a position close to the tip. The outer 
shell is mainly designed from aerodynamic considerations and behaves as a secondary structure that 
transfers the pressure loads on the blade to the box girder. See Figure 1. 
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Figure 1. A typical blade structure. From Sørensen et al. (2004). 
 
The purpose of the box girder is to give the blade sufficient strength and stiffness, both globally and 
locally. Globally, the blade should be sufficiently stiff not to collide with the tower during operational 
loading. Locally, the box girder, together with the stiffness of the outer shell, ensures that the shape of the 
aerodynamic profile is maintained. 
 
The pressure load on the blade results in edgewise and flapwise bending, as well as torsional loading of the 
blade. The box girder primarily carries the flapwise and torsional loads, while the edgewise bending is 
carried primarily by strengthening the leading and trailing edges of the aerodynamic profile. In flapwise 
bending, one side of the box girder is in compression and one side in tension. The compressive loading 
may cause the flange to fail in buckling, as seen in Figure 2. As the size of wind turbine blades is increased, 
structural stability against buckling may be expected to govern the design. 
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Figure 2. Buckling of a box girder. 

 
As it is seen in Figure 2, large local deflections occur in the transverse direction (section A) as the flange 
starts to buckle. It is clear that the webs also are taking part in the deformation. Usually a limited number 
of shell elements are used in the transverse direction to model the box structure, so it can be questioned 
how well strains and stresses are predicted in the transverse plane. It is also well known that the boundary 
conditions have a great influence on the buckling strength of a panel. The accuracy of the modelling of the 
support of the flange panel is questionable, considering the limited number of shell elements in the 
transverse direction. Therefore, the purpose of this paper is to give some light to these questions by 
comparing results from a very detailed 2D solid FE-model, with results from coarser 3D shell FE-models. 
 
 
2  FINITE ELEMENT MODELS 
In order to make the finite element models, a realistic lay-up sequence was reproduced, as followed during 
a manufacturing process, and then this was translated into a geometric model. In the MSC.Patran modeling 
environment, a series of Patran Command Language (PCL) functions were used to create the desired 
geometry from a list of predetermined variables. The variables were chosen in order to easily generate 
many different box girder cross-sections. 
 
The advantages of using PCL are: 

• Automated generation of geometry. 
• Time saving. 
• Capability for constructing many different cross-sections. 
• Easy to perform parametric studies. 
 

Some guidelines for building up the models are given below: 
 
The Shell Model 
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- The composite structure is represented by a single surface. 

- The total thickness of the composite structure is related to the direction of a vector normal to the 
surface. 

- The behaviour of the surface is as predicted by Classical Laminate Theory (CLT) for a composite 
structure. 

 
The 2D Solid Model 

- The composite structure is represented by a set of surfaces, where one of the dimensions of each 
surface represents the thickness of one material layer from the composite. 

- The direction of a vector normal to the surfaces is related to the spanwise direction. For this case, 
this is a non-relevant direction, as plane strain is assumed. 

 
Figure 3 shows the geometry of the shell and 2D solid models that are generated based on the guidelines 
presented above. See Pardo (2004) for a more detailed description. 
 

 
Figure 3. One quarter of the blade box girder. Left: Shell model, Right: 2D-solid model. 

 
For the shell model, two mesh densities have been used: a fine one with 400 elements and a coarser one 
with 40 elements. When using finite element analysis for the practical design of wind turbine blades, most 
of the blade is usually modelled as one shell model. In order to achieve acceptable solution times, especially 
for non-linear analyses, the mesh needs to be quite coarse. Therefore, the coarse mesh model represents a 
more realistic mesh density for shell models of an entire blade. It is even believed to be in the finer end of 
commercial used mesh densities.  For the 2D-solid model, 2 or 3 elements are used through the thickness 
of UD or biaxial lamina stacks and 4 elements are used through the thickness for the core material in the 
webs.  
 
 
3  MATERIAL PROPERTIES 
The material properties used in this study (see Table 1) are based on publicly available data for E-
glass/Epoxy prepreg. The index 1 represents the properties in the spanwise direction, while index 2 
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represents the properties in the transverse direction. As we are only interested in the transverse behaviour 
(plane strain is assumed), isotropic materials with the index 2 properties are used for reasons of 
simplification. 
 

Material E1 [Mpa] E2 [Mpa] G12 [Mpa] G13 [Mpa] 12 

Unidirectional (UD) 38600 8300 4100 3000 0.26 

Biaxial 12600 12600 10800 3000 0.52 

Core 70 70 19 19 0.35 

Table 1. Material properties. 
 
 
4  LOADS AND BOUNDARY CONDITIONS 
The pressure loads on the blade are transferred to the box girder in a quite complicated manner. In the 
present analysis the box girder section is loaded in a very simplified manner, namely as a line load in the 
centre of the flange as shown in Figure 3.  In order to simplify the complexity of the analysis, symmetry is 
assumed for the box girder cross-section about both main axes. This is not always true in reality, as the ply 
lay-up and location can vary both between the top and bottom flanges and also in sidewise direction.  
 
When the above simplifications are introduced, only a quarter of the entire cross-section geometry should 
be analysed under the boundary conditions (BC) presented in Table 2. The boundary conditions refer to 
the coordinate system of Figure 3. Here Tx refers to translation in the x-direction and Ry to rotation 
around the y-axis, and so on. 
 

Area Tx Ty Tz Rx Ry Rz 

Flange midplane X √ X X X X 

Web midplane √ X X X X X 

Table 2. Model boundary conditions. √ : Unrestrained. X: Restrained. 
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Figure 4. Strains and Stresses in the box girder for a load of 16.25N/mm. 

 
 
5  RESULTS 
Figure 4 presents the calculated strain and stress distributions through the laminate thickness, for the three 
different locations A, B and C in Figure 3. The “Shell fine” and “Shell coarse” results come from the fine 
and coarse mesh shell models described in section 2. For both models linear analyses are used. For the 
shell models, the values presented are values at the mid-plane of each stack of similar layers. The “Solid 
linear” results come from the 2D-solid model using linear analysis, whereas “Solid non-linear” results refer 
to a solution where geometrical non-linearities are taken into account. A large displacement and small 
strain formulation is used. 
 
At the symmetry planes (point A and C), the structure is only subjected to bending and the different 
models are found to give very similar prediction of the strains (see Figure 4a and 4c). This complies with 
the Kirchhoff-Love hypothesis, in which it is assumed that planes perpendicular to the plate’s mid-surface 
remain plane (see e.g. Jones 1999). The classical laminate theory used in the shell model solution is based 
on this assumption.  At point B (see Figure 3) the structure is subjected to both bending and shear. Here 
the strain is not linear through the laminate and the shell models are not found to predict the strain 
distribution well (see Figure 4e). 
 
As it is seen from the results in Figure 4, some non-linearity is found at point B and C especially. In Figure 
5, the deflection at the midpoint of the flange (point A) and web (point C) are shown as a function of load. 
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It is found that the non-linearity starts to become important when deflections are of the same order as the 
respective laminate thickness. 
 

 
Figure 5. Flange and web midpoint deflections as function of load magnitude. 

 
 
6  CONCLUSIONS 
In the analysis of wind turbine blade structures, shell models and the detailed 2D model is found to give 
similar results for the deflection, the stain and the stress in regions were there is ‘pure bending’. However, 
large differences in the calculated strain and stress can occur between the shell models and the more 
realistic detailed 2D-solid model, especially in regions where the loading is dominated by shear. This should 
be taken into account when using strain and stress results from shell models in the practical design of 
structures.  It is found that geometrical non-linearity starts to become important when deflections are of 
the same order as the  laminate thickness. 
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