Effects of fillers on the properties of liquid silicone rubbers (LSRs)

Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin; Skov, Anne Ladegaard

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
1.2.3 Effects of fillers on the properties of liquid silicone rubbers (LSRs)

L.Y. Yu, S. Vudayagiri, S. Zakaria, A.L. Skov*
Technical University of Denmark
al@kt.dtu.dk

Effects of Fillers Depend On

- **Particle Size**
 - >10μm: Degradants
 - 1-10μm: Diluents
 - 0.1-1μm: Semi-reinforcing
 - 0.01-0.1μm: Reinforcing

- **Particle Surface Area**
 - Bigger is Better

- **Particle Shape**
 - Broader (and Longer) is Better

- **Particle Surface Activity**
 - (Compatibility With/Adhesion To Matrix)
 - More is Better

Particle Shape

- Broader (and Longer) is Better
 - Platy
 - Fiber
 - Cluster

Particle Surface Activity

- More is Better
 - Poor contact
 - Good contact
 - Bonded
 - Matrix wetting
 - Matrix adhesion

Particle Size

- Smaller is Better

Particle Surface Area

- Bigger is Better

size \downarrow \text{surface area}
SiO$_2$ reinforces the networks with no increase in permittivity ($\varepsilon_{r, \text{SiO}_2} \sim 3.9$).

The inhomogeneous compatibility of the unmodified multiwalled carbon nanotubes (MWCNTs) causes the risk of conductivity.

Micron-sized CaCu$_3$Ti$_4$O$_{12}$ CCTO ($\varepsilon_{r, \text{CCTO}} \sim 10000$) decreases the mechanical properties of the composites.
Effects of fillers on the properties of liquid silicone rubbers (LSRs)

L.Y. Yu, S. Vudayagiri, S. Zakaria, A.L. Skov*
Technical University of Denmark
al@kt.dtu.dk

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial supports from the InnovationsFonden and Danfoss Polypower A/S. Participation to this conference was partially supported by COST (European Cooperation in Science and Technology) in the framework of ESNAM (European Scientific Network for Artificial Muscles) - COST Action MP1003, which is also acknowledged.

TiO₂

Rutile \(\varepsilon_r : 114-180 \)

Hydrophobic: modified polysiloxane

Nano-sized: 25-250nm

Spherical particle

<table>
<thead>
<tr>
<th></th>
<th>Tear strength (N/mm)</th>
<th>Relative permittivity (\varepsilon_r @ 0.1\text{Hz})</th>
<th>Young’s modulus Y (MPa)</th>
<th>Breakdown strength (V/μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSR</td>
<td>6.6</td>
<td>2.8</td>
<td>0.8</td>
<td>130</td>
</tr>
<tr>
<td>LSR/TiO₂</td>
<td>20</td>
<td>5.5</td>
<td>1.0</td>
<td>150</td>
</tr>
</tbody>
</table>