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Production of fatty acid-derived oleochemicals
and biofuels by synthetic yeast cell factories
Yongjin J. Zhou1,2, Nicolaas A. Buijs1,w, Zhiwei Zhu1,2, Jiufu Qin1, Verena Siewers1,2 & Jens Nielsen1,2,3,4

Sustainable production of oleochemicals requires establishment of cell factory platform

strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be

rapidly implemented into existing infrastructures such as bioethanol production plants. Here

we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the

production of alkanes and fatty alcohols from its descendants. The engineered strain

produces up to 10.4 g l� 1 of FFAs, which is the highest reported titre to date. Furthermore,

through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and

aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to

alkanes (0.8 mg l� 1) and fatty alcohols (1.5 g l� 1), to our knowledge the highest titres

reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for

production of fatty acids derived products and even aldehyde-derived chemicals of high value.

DOI: 10.1038/ncomms11709 OPEN

1 Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden. 2 Novo Nordisk
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S
ustainable and cost-effective routes for renewable
production of chemicals and fuels are needed to support
the growing population and economy with a reduced

carbon footprint1,2. Oleochemicals are substitutes of
petrochemicals and are usually derived from plant oils and
animal fats, which have limited availability3. Microbial fatty acid
biosynthesis has captured much attention as it offers a way for
renewable oleochemicals production4. There have been several
reports on engineering the bacterium Escherichia coli for the
production of various oleochemicals5–11, including alkanes that
can be used directly as biofuels6. On the other hand, for industrial
scale production the yeast Saccharomyces cerevisiae is more
suitable due to its robustness and tolerance towards harsh
fermentation conditions, as well as its widespread use for
bioethanol production12,13. This will allow transforming
existing bioethanol production plants for production of these
chemicals. The productivity and yield of oleochemicals produced
by the well characterized model yeast S. cerevisiae is still relatively
low14–16. Moreover, most biosynthetic pathways are designed to
utilize the tightly regulated lipid biosynthesis intermediate fatty
acyl-CoA14 or fatty acyl carrier protein (ACP)17, which limits the
metabolic flux. Free fatty acids (FFAs) on the contrary can be
accumulated to much higher levels (4200-fold higher than fatty
acyl-CoA)18 and used for the biosynthesis of alkanes and fatty
alcohols through formation of a fatty aldehyde intermediate7. We
thus explored the establishment of FFA-derived pathways for the
production of alkanes and fatty alcohols, two classes of valued
oleochemicals (Fig. 1).

We first constructed a plasmid-free yeast strain by blocking
fatty acid activation and degradation, introducing an optimized
acetyl-CoA pathway, expressing a more efficient fatty acid
synthase (FAS) and overexpressing the endogenous acetyl-CoA
carboxylase. The engineered strain produced up to
10.4 g l� 1 of FFAs in fed-batch fermentation. We then
constructed biosynthetic pathways for production of alkanes
and fatty alcohols by screening endogenous alcohol
dehydrogenases/aldehyde reductases (ADH/ALRs) and pathway
balancing, which resulted the highest titres of alkanes
(0.8 mg l� 1) and fatty alcohols (1.5 g l� 1) in S. cerevisiae.

Results
Systematic engineering for free fatty acids production. We first
started by establishing a platform strain that overproduces FFAs.
In S. cerevisiae, fatty acids are mainly synthesized de novo by a
cytosolic type I FAS19 as activated fatty acids (fatty acyl-CoAs) by
condensing acetyl-CoA and malonyl-CoA. FFAs are rapidly
re-activated by fatty acyl-CoA synthetases to fatty acyl-CoAs,
whose accumulation feedback inhibits fatty acid biosynthesis20.
A wild-type strain therefore only produced 3 mg l� 1 FFAs
(Fig. 2a). To circumvent this, we interrupted the reactivation
process by deleting two of the main fatty acyl-CoA
synthetase encoding genes FAA1 and FAA4. To prevent fatty
acid degradation through b-oxidation we also deleted
POX1 encoding the fatty acyl-CoA oxidase, which catalyses the
first step of this pathway. The resulting strain YJZ06
produced 0.56 g l� 1 FFAs (Fig. 2a). This is consistent with
earlier studies, which have shown that interruption
of FFA activation is essential for FFA accumulation and
secretion21,22. Our previous15 and current studies
(vide infra) showed that deletion of the aldehyde
dehydrogenase-encoding gene HFD1 is essential for the
production of fatty aldehyde-derived alkanes and fatty
alcohols. Thus, we used the HFD1 knockout strain YJZ08 for
further engineering. To further increase FFA production we
expressed a truncated E. coli thioesterase encoding gene ’tesA

(refs 5,14) to increase FFA release from the FAS complex, which
resulted in a titre of 0.67 g l� 1 (strain YJZ13).

Next we aimed on increasing the supply of the precursor
cytosolic acetyl-CoA by introducing a synthetic chimeric citrate
lyase pathway (Fig. 1), which has been proposed to play an
important role in lipid accumulation in oleaginous yeasts23.
In addition to expressing an ATP:citrate lyase (ACL) as described
before24, we here constructed and optimized the citrate lyase
cycle (Figs 1 and 3a) by systematically comparing different
heterologous ACLs and malic enzymes (MEs), two significant
components of this pathway, and overexpressing the endogenous
mitochondrial citrate transporter Ctp1 and malate dehydrogenase
’Mdh3. Introduction of the chimeric acetyl-CoA pathway,
consisting of ACL and ME from Rhodospuridium toruloides
combined with overexpression of Ctp1 and ’Mdh3, improved the
growth of a pyruvate decarboxylase negative strain IMI076 with
an internal deletion in MTH1 (Pdc� MTH1-DT)25 (Fig. 3c). We
further show that ACL from Mus musculus (MmACL) was better
than the ones from R. toruloides (RtACL) and Homo sapiens
(HsACL) in improving IMI076 growth (Fig. 3c) and ME from R.
toruloides (RtME) was important for cell growth in addiction to
ACL in IMI076 (Fig. 3d). Furthermore, the ACL-based acetyl-
CoA pathway rescued the growth of pyruvate decarboxylase
negative strain RWB837 (Fig. 3b), which is growth-deficient25.
Consistently, plasmid-overexpression of these genes improved
FFA production (Fig. 3e) and MmACL was better for FFA
production compared with RtACL and HsACL (Fig. 3f). Since
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acetyl-CoA carboxylase encoding gene ACC1 was overexpressed by
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introduced for reducing FFAs to fatty aldehydes, which were then
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plasmid-expression retarded the cell growth probably due to the
metabolic burden (Supplementary Fig. 1), we thus genomic-
integrated the optimized actyl-CoA pathway consisting of
MmACL, RtME, CTP1 and ‘MDH3, which improved FFA
production to 0.80 g l� 1 (strain YJZ41, Fig. 2a).

Then we enhanced fatty acid synthesis by expressing a R.
toruloides FAS (RtFAS). This FAS has two ACP domains, which
may improve fatty acid biosynthesis efficiency by increasing the
intermediate concentration in its reaction chamber23,26. RtFAS
was functionally expressed and increased the total lipid and FFA
content (Supplementary Fig. 2). Genomic integration of both
RtFAS and the acetyl-CoA pathway (YJZ45) increased the FFA
titre to 0.92 g l� 1 in shake flasks and the corresponding
prototrophic strain YJZ45U reached 7.0 g l� 1 in fed-batch
cultivation. After ensuring sufficient acetyl-CoA supply and
fatty acid synthesis, we wanted to evaluate whether increased
supply of malonyl-CoA, another tightly regulated precursor,
could increase FFA production. We first evaluated an acetyl-CoA
carboxylase mutant (Acc1S1157A,S659A, Acc1**)27 in which
regulation by phosphorylation is abolished. However, its
expression resulted in a lower FFA titre with lower biomass
yield in fed-batch cultivation and promoted longer-chain fatty
acid biosynthesis (Supplementary Fig. 3). The latter is consistent
with a previous study reporting a shift towards C18 fatty acids at
a higher malonyl-CoA/acetyl-CoA ratio by an in vitro
reconstituted FAS from S. cerevisiae28. Alternatively, we

moderately enhanced the expression of the wild-type ACC1 by
replacing its native promoter with the TEF1 promoter
(strain YJZ47), which enabled an increase of FFA production to
1.0 g l� 1 (333-fold higher than wild-type strain, 14.3%
of theoretical yield) in shake flask cultivation. It should be
emphasized that the heavily engineered strain YJZ47 had
a similar biomass yield compared with wild-type strain
(Supplementary Fig. 4). This robustness is very important
for implementation in industrial processes. Glucose limited
fed-batch cultivation of this strain resulted in a titre of
10.4 g l� 1 FFAs (Fig. 2b,c), which was 49% higher than strain
YJZ45U and also 20% higher than an engineered E. coli
(8.6 g l� 1) in fed-batch culture29 (Table 1). Interestingly, an
increased percentage of oleic (C18:1) and stearic acid (C18:0) was
observed in both strains during the fermentation (Fig. 2d and
Supplementary Fig. 3c), which may be attributed to the
upregulation of the fatty acid elongation system30, since
the yeast FAS has much higher level production of C16 fatty
acids than C18 fatty acids in vitro31.

Engineering a fatty acid pathway for alkane production. Sub-
sequently, we wanted to exploit the FFAs for the production of
alkanes, ideal drop-in biofuels6. We previously introduced a
cyanobacterial fatty acyl-CoA-derived pathway, consisting of a
Synechococcus elongatus fatty acyl-ACP/CoA reductase (AAR)
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and fatty aldehyde deformylating oxygenase (SeADO), in yeast
and thereby demonstrated for the first-time production of alkanes
in this organism15. The study, however, suggested that the AAR

was inefficient in yeast. We therefore explored an alternative
pathway by expressing a Mycobacterium marinum carboxylic acid
reductase (MmCAR)7 (Fig. 4a). For activation of MmCAR7, we
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Table 1 | Comparison of cell factories for production of free fatty acids.

Microorganism Media Cultivation mode Titre (g l� 1) Yield (% theoretical yield) Reference

E. coli MM Shake flask 1.1 14 5

E. coli SMM Fed-batch 8.6 N.C.* 29

E. coli SMM Fed-batch 3.9 N.C.* 54

Y. lipolytica MM Shake flask 0.5 7 43

S. cerevisiae MM Shake flask 0.1-0.5 2-7 13,39,40

S. cerevisiae YPD Shake flask 2.2 N.C.* 21

S. cerevisiae MM Shake flask 1.0 14 This study
S. cerevisiae MM Fed-batch 10.4 9 This study

MM, minimal media; SMM, semi-minimal media containing complex media component such as yeast extract; YPD, complex media containing 20 g l� 1 peptone, 10 g l� 1 yeast extract and 20 g l� 1

glucose.
*N.C.: not calculated due to containing complex media component such as yeast extract.
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expressed 40-phosphopantetheinyl transferase NpgA from
Aspergillus nidulans. This FFA-based pathway enabled a 2.7-
fold higher alkane production (0.48 mg l� 1) than the fatty acyl-
CoA-based pathway in an hfd1D background (Fig. 4b). Deletion
of POX1 slightly increased alkane production to 0.52 mg l� 1

(Fig. 4c). Further increasing the fatty acid supply did not increase
the titre, but instead increased fatty alcohol production
(Supplementary Fig. 6). Fatty alcohol accumulation might be
caused by endogenous promiscuous aldehyde reductases (ALRs)
and/or alcohol dehydrogenases (ADHs) that compete for the fatty
aldehyde intermediates32. To solve this, we tried to identify the
main competing enzymes by single deletion of 17 (putative) ALR/
ADH-encoding genes (Supplementary Table 1). Of these, ADH5
deletion led to an increased alkane production and decreased fatty
alcohol accumulation (Fig. 4c and Supplementary Fig. 7). To
further increase flux towards alkanes we increased the expression
of the ADO by expressing SeADO under control of strong
promoter UAS-TDH3p (ref. 33) and modulated MmCAR
expression by single-copy genomic integration. The resulting
strain A5 produced 50% more alkanes corresponding to
0.78 mg l� 1 and had a 40% reduction in fatty alcohol

accumulation, compared with the control strain A2 (Fig. 4c).
Finally we evaluated additional expression of Nostoc punctiforme
NpADO and this increased alkane production to 0.82 mg l� 1 with
a further reduction in fatty alcohol accumulation (Fig. 4c).
Although the titre is still cannot be comparable to E. coli, it
represent more the eightfold higher titre than our previous
work15.

Tailoring fatty acid for production of fatty alcohols. The
accumulation of fatty alcohols in our alkane producing strains
(Fig. 3) gave us confidence to further explore the production of
fatty alcohols from FFAs (Fig. 5a). Fatty alcohols are widely used
as detergents, cosmetic ingredients and for the formulation of
pharmaceuticals. Current fatty alcohol production strongly relies
on plant oils, and microbial production could ensure a stable
supply, without competition with food oil production, and
enables tailored production of specific fatty alcohols. As observed
for alkane production (Fig. 3b), the CAR was more efficient for
fatty alcohol production than Acinetobacter baylyi fatty acyl-CoA/
ACP reductase (ACR) or AAR (Supplementary Fig. 8). Since
deletion of ADH5 decreased fatty alcohol production in our
ALR/ADH screening (Supplementary Fig. 7b,c), we overexpressed
ADH5 to increase fatty alcohol production. Indeed, Adh5 was
more efficient for fatty alcohol synthesis than several other
ADH/ALRs, that is, endogenous Sfa1, Adh6, Adh7 or
heterologous YjgB from E. coli (Supplementary Fig. 7d). When
increasing the FFA supply (strain FOH6), the fatty alcohol
production reached a titre of 23.2 mg l� 1 (Fig. 5b and
Supplementary Fig. 9b). Allowing substrate channelling of the
fatty aldehyde intermediates, by fusing MmCAR and Adh5,
increased the fatty alcohol titre further by 26% (strain FOH21).
However, enzyme fusion had a negative effect in the HFD1
deletion strain FOH23 (Supplementary Fig. 9d), which may be
attributed to the low activity of MmCAR in the fusion enzyme.
Combining deletion of HFD1 and blocking fatty acid degradation
(strain FOH8) further increased fatty alcohol production to
61.2 mg l� 1 (Fig. 5b). However, there was still an accumulation of
intracellular C18 fatty aldehydes (Supplementary Fig. 10b),
indicating that C18 aldehyde reduction was a limiting step. Since
a previous study showed that the bi-functional fatty acyl-CoA
reductase FaCoAR from Marinobacter aquaeolei VT8 (ref. 34) has
high activity towards long-chain fatty-aldehydes, we expressed
FaCoAR instead of ADH5 together with MmCAR in FOH28 and
this resulted in 77.1 mg l� 1 fatty alcohols. Co-expression of
ADH5 and FaCoAR (strain FOH29) further improved fatty
alcohol production to 81.8 mg l� 1 (Fig. 5b). Expression of
FaCoAR and ADH5 resulted in B80% reduction of the C18 fatty
aldehyde (octadecanal and 9-octadecenal) content compared with
ADH5 overexpression (Supplementary Fig. 10b). We also
evaluated fusion of MmCAR and FacoAR, but this decreased fatty
alcohol production (Supplementary Fig. 10c). Our ADH/ALR
knockout screening showed that ADH6 deletion increases fatty
alcohol production by 50% (Supplementary Fig. 7b). We
therefore deleted ADH6 (strain FOH31) resulting in increased
fatty alcohol production to 89.5 mg l� 1 (Fig. 4b).

We found that there was still a high accumulation of FFAs
(42-fold higher than fatty alcohols, Supplementary Fig. 11) in
strain FOH31, which indicated that fatty acid biosynthesis was
overflown and the downstream reduction needed to be enhanced.
We thus genome-integrated an additional copy of MmCAR under
control of a GAL7 promoter (together with GAL80 deletion to
enable gene expression without galactose addition). The resulting
strain FOH33 produced 28% more fatty alcohols (115 mg l� 1)
with a 65% reduction in FFA accumulation (Fig. 5b and
Supplementary Fig. 11). Glucose limited fed-batch cultivation
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(Fig. 5d) of FOH33 had a more significant improvement (onefold,
Supplementary Fig. 11c) in production of fatty alcohols (1.5 g l� 1,
Fig. 5c), which is the highest reported titre of fatty alcohols
produced by S. cerevisiae to date14,35. The titre is also comparable
to E. coli cells though the yield is still much lower (Table 2).

Discussion
The budding yeast S. cerevisiae is an attractive host for
biosynthesis of specific products because of its robustness in
industrial harsh conditions and easily transfer to existing
bioethanol production plants. In this study, we undertook a
major metabolic engineering effort to engineer S. cerevisiae for
high-level production of FFAs and then their further transforma-
tion into alkanes and fatty alcohols. We demonstrated for the first
time the significant conversion of FFAs to alkanes and fatty

alcohols in yeast, and we also showed that this FFA dependent
pathway is far more efficient than the earlier reported route from
fatty acyl-CoA (Fig. 3b and Supplementary Fig. 8). The
production of alkanes and fatty alcohols benefited from our
effort to streamline the fatty acid overproduction by taking the
advantage of high cellular FFA levels (4200-fold higher than
fatty acyl-CoA).

Oleaginous yeasts have been engineered for high-level
production of neutral lipids such as triacylglycerol36,37, an ideal
feedstock for biodiesel production through transesterification.
However, the intracellular accumulation requires very high cell
density fermentation and also makes it challenging to recover the
products38. FFAs are another ideal feedstocks for deoxygenated
production of renewable hydrocarbon-based biofuels that are
entirely fungible with fossil fuels39. More importantly, FFAs can
be secreted (Supplementary Fig. 4c), which is beneficial for high-
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Figure 5 | Engineering fatty alcohol production from FFAs. (a) The rewired metabolic pathways for fatty alcohol production. Genes responsible for
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Table 2 | Comparison of cell factories for production of fatty alcohols.

Microorganism Media Cultivation mode Titre (g l� 1) Yield (% theoretical Yield) Reference

E. coli MM Fed-batch 0.75 6 17

E. coli MM Fed-batch 1.75 8 55

E. coli MM Fed-batch 1.65 35 46

S. cerevisiae MM Shake flask 0.10 1.4 14,45

S. cerevisiae MM Concentrated resting cells. Fed-batch 1.11 N.C.* 35

S. cerevisiae MM Shake flask 0.12 1.7 This study
S. cerevisiae MM Fed-batch 1.51 1.4 This study

MM, minimal media.
*N.C.: not calculated due to the concentration of the cells with unknown initial fatty alcohols.
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level production by decoupling it from the cell growth (Fig. 2b).
Aiming to overproduce FFAs, several researchers disrupted FFA
activation and enhanced FFA biosynthesis, for example, through
expression of different thioesterases, which enabled FFA
production at 0.1–0.5 g l� 1 in minimal media in shake flask
cultures (Table 1)14,40,41. More recently, disruption of FFA
activation and neutral lipid recycle enabled production of
2.2 g l� 1 in complex (YPD) medium21. However, due to its
high costs, complex makeup and variable composition, YPD
medium would not be suitable for industrial production.
Furthermore, the final engineered strain had a 20% lower
biomass level in YPD medium, which indicated that the
combination of disrupting FFA activation and neutral lipid
recycle was harmful to the cell, and might retard growth further
in minimal media with lower and less diverse nutrient availability.
In this study, we systematically optimized the primary
metabolism by disrupting FFA activation, constructing a more
efficient fatty acid synthesis system and a chimeric citrate lyase
cycle for enhanced precursor supply. More importantly, we are
the first to construct a plasmid-free FFA overproducing strain by
integration of all pathway components into the genome, which is
important for application in industrial processes. These strategies
enabled high-level FFA production in yeast under shake flask
with minimal media (Fig. 2a) without a decrease in the biomass
yield (Supplementary Fig. 4a). Fed-batch cultivation not only led
to accumulation of a high FFA titre (10.4 g l� 1), but also a high
biomass titre of 48 g l� 1, which is at the same level as a wild-type
CEN.PK strain in fed-batch cultivation42. Before our study, the
highest FFA titre (8.6 g l� 1) was reached by an engineered E. coli
in fed-batch culture29. This is the first time that S. cerevisiae
surpassed E. coli in regards to oleochemical production. It is
worthy to mention that the FFA titre is also higher than
oleaginous yeast Yarrowia lipolytica of 0.5 g l� 1 (Table 1)43,
which shows the potential of S. cerevisiae for FFA production.

Though lower in titre, the alkane production was much higher
by using the FFA-based pathway compared with the fatty
acyl-CoA-based pathway (Fig. 3b). By-product accumulation
can hamper metabolic engineering endeavours. Because of the
low ADO activity44, the alkane titre remained low and fatty
alcohols were being produced as major by-products (Fig. 3c). To
overcome this problem, we first identified Adh5 as a key enzyme
for conversion of fatty aldehydes to fatty alcohols by screening a
series of ALR/ADH deletion strains. By deleting Adh5, we could
significantly improve alkane production. However, their
indispensable role in the biosynthesis of essential metabolites
makes it impossible to delete all these enzymes. Increased
expression of enzymes involved in conversion of fatty aldehydes
to alkanes further increased alkane production, pointing to this
step as having major flux control.

In contrast to alkane production, fatty alcohol biosynthesis
relies on efficient reduction of fatty aldehyde (Fig. 5a). We
therefore took advantage of our screening of different ALR/ADH
deletion strains and found that overexpression of ADH5 and
deletion of ADH6 could significantly improve fatty alcohol
production (Supplementary Fig. 7). Combined with enhanced
precursor supply, our final strain produced 1.5 g l� 1 fatty
alcohols in fed-batch culture, which to our knowledge is the
highest reported titre by S. cerevisiae. Current heterologous fatty
alcohol biosynthesis pathways in yeast are designed to utilize fatty
acyl-CoA as precursor, which enabled producing B90 mg l� 1

fatty alcohols in shake flasks14,45. Recently, increasing acetyl-CoA
supply and relieving the inhibition on fatty acyl-CoA
biosynthesis, resulted in production of fatty alcohols at
330 mg l� 1 in shake flask and 1.1 g l� 1 in fed-batch cultivation
with high concentrated cells35. In that study, concentrated cells
were used in fed-batch cultivation, which might result in an

overestimated titre since concentrated cells should carry high-
level initial cellular fatty alcohols. Moreover, the higher titre
compared with our study for shake flask cultures might be
attributed to the use of a dodecane overlay, which has been shown
to be beneficial for fatty alcohol production46. However, a
dodecane overlay will result in higher costs for product recovery
due the similar boiling points of fatty alcohols and dodecane.
Here, our strain produced much more fatty alcohols in fed-batch
culture without a dodecane overlay. In the future, identification of
fatty alcohol transporters might realize in situ product separation
and recovery.

In conclusion, we have developed yeast cell factories for the
production of FFAs and fatty alcohols, as well as demonstrated
the significant production of alkanes in yeast. These strains
represent a starting point for establishing yeast-based commercial
bioprocesses for the production of oleochemicals and advanced
biofuels from renewable resources. Our metabolic engineering
strategies of pathway balancing at the fatty aldehyde node not
only facilitated the production of fatty aldehyde-derived products
but also provide valuable insights for construction of yeast cell
factories for production of other valuable aldehyde chemicals, for
example, vanillin47, because of the similarity of the competition
from ALR/ADHs.

Methods
Strains and reagents. Plasmids and S. cerevisiae strains used are listed in
Supplementary Tables 2 and 3. PrimeStar DNA polymerase was purchased from
TaKaRa Bio. Taq DNA polymerase, restriction enzymes, DNA gel purification and
plasmid extraction kits were purchased from Thermo Scientific. Yeast plasmid
Miniprep I kits were purchased from Zymo Research. All oligonucleotides
(Supplementary Table 4) were synthesized at Sigma-Aldrich. All chemicals
including analytical standards were purchased from Sigma-Aldrich unless stated
otherwise. All codon optimized heterologous genes were synthesized (Genscript)
and listed in Supplementary Table 5.

Strain cultivation. Yeast strains for preparation of competent cells were cultivated
in YPD consisting of 10 g l� 1 yeast extract (Merck Millipore), 20 g l� 1 peptone
(Difco) and 20 g l� 1 glucose (Merck Millipore). Strains containing URA3-based
plasmids or cassettes were selected on synthetic complete media without uracil
(SC-URA), which consisted of 6.7 g l� 1 yeast nitrogen base (YNB) without amino
acids (Formedium), 0.77 g l� 1 complete supplement mixture without uracil
(CSM-URA, Formedium), 20 g l� 1 glucose (Merck Millipore) and 18 g l� 1 agar
(Merck Millipore). The URA3 maker was removed and selected against on SCþ
FOA plates, which contained 6.7 g l� 1 YNB, 0.77 g l� 1 complete supplement
mixture and 0.8 g l� 1 5-fluoroorotic acid. Strains containing the kanMX cassettes
were selected on YPD plates containing 200 mg l� 1 G418 (Formedium).

Shake flask batch fermentations for production of alkanes and fatty alcohols
were carried out in minimal medium containing 5 g l� 1 (NH4)2SO4, 3 g l� 1

KH2PO4, 0.5 g l� 1 MgSO4�7H2O, 30 g l� 1 glucose, trace metal and vitamin
solutions48 supplemented with 40 mg l� 1 histidine and/or 60 mg l� 1 uracil if
needed. While for production of FFAs, the minimal media was modified by using
lower glucose (20 g l� 1) and higher KH2PO4 (14.4 g l� 1), which was beneficial for
FFA accumulation (Supplementary Fig. 5). Cultures were inoculated, from 24 h
precultures, at an initial OD600 of 0.1 in 15 ml minimal medium and cultivated at
200 r.p.m., 30 �C for 72 h.

The batch and fed-batch fermentations for fatty acid and fatty alcohol
production were performed in 1.0 l bioreactors, with an (initial) working volume of
0.4 l, in a DasGip Parallel Bioreactors System (DasGip). The initial batch
fermentation was carried out in minimal medium containing 5 g l� 1 (NH4)2SO4,
3 g l� 1 KH2PO4, 0.5 g l� 1 MgSO4�7H2O, 10 g l� 1 glucose, trace metal and vitamin
solutions. The temperature, agitation, aeration and pH were monitored and
controlled using a DasGip Control 4.0 System. The temperature was kept at 30 �C,
initial agitation set to 600 r.p.m. and increased to maximally 1,200 r.p.m. depending
on the dissolved oxygen level, aeration was provided at 30 sl h� 1 and the dissolved
oxygen level was maintained above 40%, the pH was kept at 5.6 by automatic
addition of 4 M KOH and 2 M HCl. The aeration was controlled and provided by a
DasGip MX4/4 module. The composition of the off-gas was monitored using a
Dasgip Offgas Analyzer GA4. Addition of the acid, base, and glucose feed was
carried out with Dasgip MP8 multi-pump modules (pump head tubing: 0.5 mm ID,
1.0 mm wall thickness). The pumps, pH and DO probes were calibrated before the
experiment. During the fed-batch cultivation, the cells were fed with an 800 g l� 1

glucose solution with a feed rate that was exponentially increasing (m¼ 0.03 h� 1)
to maintain a constant biomass-specific glucose consumption rate. The initial feed
rate was calculated using the biomass yield and concentration that were obtained
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during prior duplicate batch cultivations with these strains. The feeding was started
once the CO2 levels dropped after the glucose was consumed.

Dry cell weight measurements were performed by filtrating 1 ml of broth
through a weighed 0.45 mm filter membrane (Sartorius Biolab) and measuring the
weight increase after drying for 48 h in a 65 �C oven. The filter was washed once
before and three times after filtrating the broth with 5 ml deionized water.

Genetic manipulation. Seamless gene deletion was performed (Supplementary
Fig. 12a) by using Kluyveromyces lactis URA3 (KlURA3) as a selection marker,
which was looped out by homologous recombination of the direct repeats, and
selection on SCþ FOA plates49. The deletion cassettes were constructed by fusing
200–600 nucleotide homologous arms with the KIURA3. For single gene deletion
in identification of the ALRs and alcohol dehydrogenases, kanMX cassettes
containing about 70 nucleotide homologous arms at both ends were used to
transform strain YJZ03. amdSYM cassette50 was used as a selection marker for
genome-integration of FAS genes from S. cerevisiae (ScFAS) or R. toruloides
(RtFAS). The pathways for alkane and alcohol production were assembled on a
yeast chromosome or plasmid backbone pYX212 by using a modular pathway
engineering strategy51. The gene expressing modules, consisting of a promoter, a
structural gene, a terminator and the promoter of the next module for homologous
recombination, were constructed by fusion PCR. Then the modules were gel
purified and transformed to the S. cerevisiae with linearized plasmid
pYX212.Genome-integration was performed by using a modular pathway
integration strategy (Supplementary Fig. 12b). Taking the example of targeted
integration of (TPIp-MmCAR-FBA1t)þ (PGK1p-EcFNR-CYC1t)þ (TEF1p-EcFD-
TDH2t)þ (tHXT7p-npgA) at the ADH5 locus in YJZ03, the whole pathway was
divided into three modules of AK1, 2 and 3. In detail, the upstream homologous
arm ADH5-up (from position � 382 to þ 3) was amplified from CEN.PK113-11C
genomic DNA with primer pair p59/p60. The AK1 module of ADH5-upþ (TPIp-
CAR-FBA1t)þCYC1t was assembled by fusing the parts of ADH5-up, TPIp-CAR-
FBA1tþCYC1t. The part TPIp-CAR-FBA1tþCYC1t was amplified from the
pAlkane16 by using primer pair p19/p31. The AK2 module of (CYC1t-EcFNR-
PGK1p)þ (TEF1p-EcFd-TDH2t) was amplified pAlkane16 by using the primer pair
p32/p34. The AK3 module of TDH2tþ (tHXT7p-npgA)þURA3þADH5-3’ was
assembled by fusing the DNA parts of TDH2t, tHXT7p-npgA, KIURA3 and ADH5-
3’. The TDH2t was amplified from yeast genome DNA by using primer pair p15/
p63. The tHXT7p-npgA was amplified from pAlkane16 with primer pair
p27/p64. Amplification of KIURA3 was performed by using primer p65/p66 and
pWJ1042 as a template. And downstream homologous arms ADH5-3’ (from
position þ 579 to þ 945) was amplified from CEN.PK113-11C genomic DNA by
using primer pair p61/p62. Then the three modules (AK1, 2 and 3) were
transformed into YJZ03 and transformants were selected on SC-URA plates
(6.7 g l� 1 YNB without amino acids, 0.77 g l� 1 complete supplement mixture
without uracil and 20 g l� 1 glucose and 15 g l� 1 agar). Clones were verified by
colony PCR. Subsequently, 2–3 clones with correct module integration were
cultivated overnight in YPD liquid medium and then plated on SCþ FOA plates
after wash for looping out of URA3 and also the 3’ end of the ADH5 (from þ 579
to þ 1,056 that was left in place after the first round integration). All other
pathways were integrated as above and the genetic arrangement is shown in
Supplementary Fig. 12c

Metabolite extraction and analysis. FFAs were simultaneously extracted and
methylated by dichloromethane containing methyl iodide as methyl donor52. Since
the FFAs were secreted and cell culture formed an emulsion (Supplementary
Fig. 4c), the cell culture should be mixed well before sample taking. Cell cultures
from shake flask were diluted twofold with water and those from bioreactor were
diluted 10-fold. Briefly, 200 ml aliquots of cell culture dilutions were taken into glass
vials from 72 h incubated cultures, then 10 ml 40% tetrabutylammonium hydroxide
(base catalyst) was added immediately followed by addition of 200 ml
dichloromethane containing 200 mM methyl iodide as methyl donor and
100 mg l� 1 pentadecanoic acid as an internal standard. The mixtures were shaken
for 30 min at 1,400 r.p.m. by using a vortex mixer, and then centrifuged at 5,000g to
promote phase separation. A 160 ml dichloromethane layer was transferred into a
GC vial with glass insert, and evaporated 4 h to dryness. The extracted methyl
esters were resuspended in 160 ml hexane and then analysed by gas
chromatography (Focus GC, ThermoFisher Scientific) equipped with a Zebron
ZB-5MS GUARDIAN capillary column (30 m� 0.25 mm� 0.25 mm, Phenomenex)
and a DSQII mass spectrometer (ThermoFisher Scientific). The GC program was
as follows: initial temperature of 40 �C, hold for 2 min; ramp to 130 �C at a rate of
30 �C per minute, then raised to 280 �C at a rate of 10 �C per min and hold for
3 min. The temperature of inlet, mass transfer line and ion source were kept at 280,
300 and 230 �C, respectively. The injection volume was 1 ml. The flow rate of the
carrier gas (helium) was set to 1.0 ml min� 1, and data were acquired at full-scan
mode (50–650 m/z). Final quantification was performed using the Xcalibur
software.

For alkane and fatty alcohol quantification, cell pellets were collected from 5 ml
(fatty alcohol) or 10 ml (alkane) cell culture and then freeze dried for 48 h.
Metabolites were extracted by 2:1 chloroform:methanol solution53, which
contained hexadecane (alkanes) and pentadecanol (fatty alcohols) as internal
standards. The extracted fraction was dried by rotary evaporation and dissolved in

hexane (alkanes) or ethyl acetate (fatty alcohols). Quantification of fatty alcohols
and alkanes was performed on the same GC–MS system as used for fatty acid
analysis. The GC program for alkane analysis was as follows: initial temperature of
50 �C, hold for 5 min; then ramp to 140 �C at a rate of 10 �C per min and hold for
10 min; ramp to 310 �C at a rate of 15 �C per min and hold for 7 min. The GC
program for fatty alcohol quantification was as follow: initial temperature of 45 �C
hold for 2.5 min; then ramp to 220 �C at a rate of 20 �C per min and hold for 2 min;
ramp to 300 �C at a rate of 20 �C per min and hold for 5 min. The temperature of
inlet, mass transfer line and ion source were kept at 250, 300 and 230 �C,
respectively. The flow rate of the carrier gas (helium) was set at 1.0 ml min� 1, and
data were acquired at full-scan mode (50–650 m/z). Final quantification was
performed with Xcalibur software.

The extracellular glucose, ethanol and organic acid concentrations were
determined by high-performance liquid chromatography analysis. To that end, a
1 ml broth sample was filtered through a 0.2 mm syringe filter and analysed on an
Aminex HPX-87G column (Bio-Rad) on an Ultimate 3000 HPLC (Dionex Softron
GmbH). The column was eluted with 5 mM H2SO4 at a flow rate of 0.6 ml min� 1

at 45 �C for 26 min.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information file or
available from the corresponding author upon reasonable request.
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