Simulation and Measurement of Angle Resolved Reflectance from Black Si Surfaces

Davidsen, Rasmus Schmidt; Wu, Kaiyu; Schmidt, Michael Stenbæk; Boisen, Anja; Hansen, Ole

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Simulation and Measurement of Angle Resolved Reflectance from Black Si Surfaces

Rasmus Schmidt Davidsen*, 1, Kaiyu Wu1, Michael Stenbæk Schmidt1, Anja Boisen1, Ole Hansen1

1 Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), 2800-Lyngby, Denmark

*rasda@nanotech.dtu.dk, Ørsteds Plads building 345East, 2800 Lyngby, Denmark

Experimental specular and total reflectance as a function of incident angle. The average reflectance in the wavelength range 300-1000 nm and the value at a wavelength of 550 nm are shown (left). The specular reflectance at incident angles from 50-85° is shown to the right.

Concept

Sunlight

Black Silicon nanostructures suppress AM1.5G weighted, average reflectance from solar cell surfaces to less than 1%.

Nanostructures are fabricated by means of maskless reactive ion etching (RIE) using SF6 and O2 plasma.

Simulation Method

The nanostructure topology is modelled as a graded refractive index, Λ is a nonlinearity parameter. The index shape function was defined as \(n(z, h, L) = \text{ln}(1 + z/L)/\text{ln}(1 + h/L) \) in case of a non-linear index profile and \(n(z, h, L) = z/h \) in case of a linear index profile; here the parameters \(L = 10 \text{ nm} \) and \(h = 300 \text{ nm} \) were used.

Simulation Result

Simulated reflectance as function of incident angle at a wavelength of 550 nm for surfaces with nanostructures of 300 nm in height in case of (a) linearly graded refractive index and (b) non-linearly graded refractive index. The insets in (a) and (b) show the simulated reflectance at incident angles of 0-70°. The non-linear profile yields the lowest reflectance; below 1% for angles up to 45°.

Conclusion

Angle-resolved reflectance from nanostructured Si surfaces realized by maskless RIE texturing has been simulated and measured. In both simulation and experiment the specular reflectance is below 10% at incident angles below 65° and below 1% at incident angles below 45° in the case of non-linear graded refractive index. From the simulation results the non-linear graded refractive index yields lower reflectance than the linearly graded refractive index.