Conceptual design of a thorium supplied thermal molten salt wasteburner

Schönfeldt, Troels; Klinkby, Esben Bryndt; Klenø, K.H.; Boje, Peter; Eakes, C.; Pettersen, E.E.; Løvschall-Jensen, A. E.; Jørgensen, M. D.

Publication date:
2015

Citation (APA):
Conceptual design of a thorium supplied thermal molten salt wasteburner

Troels Schönpfeldt1,2
E. Klinkby1,2, K. H. Klenø2, P. Boje3, C. Eakes2, E. E. Pettersen1,2,4,
A. E. Løvschall-Jensen2,4, & M. D. Jørgensen2.

1DTU Nutech, 2Seaborg IVS,
3DTU Diplom, & 4Niels Bohr Institute
The Project

• Me: Troels Schönfeldt: PhDc - Advanced cold neutron moderators @ DTU Nutech and ESS Neutronics
• 168 hours/week. A PhD study is 37.5 hours/week (=> 77.7% spare-time)... So we started a company
• **Seaborg IVS:**
 – We now consist of 10 unpaid physicist, chemists and engineers
 – We focus on nuclear reactor technologies, with special focus on molten salt reactors and thorium
• Here you will be presented with our, still very preliminary, **Seaborg WasteBurner, the SWaB**
Kickoff

• In December 2014 we were invited to join the “Feasibility Study for the Development of a Pilot Scale Molten Salt Reactor in the UK”, by:

 • The SWaB design - a single salt thermal molten salt wasteburner
 • The SWaB is currently under evaluation by UK experts
 • Also, it turns out that 130.5 hours/week of spare times is not really a lot
Our constraints

1: No weapons!
- No separation of Pu/Pa from U
- Highly “denatured” U and Pu
- Decreasing weapon “quality”

2: Inherently safe
- Rely on physics
- Any active system must be redundant

3: Wasteburner
- Negative net TRU production
- Evolve towards the closed thorium fuel cycle

4: Thermal spectrum operation
- Because it has tremendous advantages
- Inefficiency of TRU burning should be compensated for by enhanced neutron economy

5: Modular (Economical):
- decrease construction/decommission cost
- Shipyard style manufacturing - mass-production
The “product”

Reactor class:
Chemistry

S. Delpech et al., Reactor physic and reprocessing scheme for innovative molten salt reactor system. Journal of fluorine chemistry, 2009
Method

- Reactor model
- Material: MCNPX (& Cinder)
- Initial fuel from LWR
- Chemistry
- Degasser
- Spectrum
- Neutronics
- Time-evolve SNF
- Refueler
- Rebalance 78LiF-22AcF₄ and volume

Simi-automatic optimization
Initial fuel and alternatives

Flame reactor:
SNF -> Fluoride salts and removes:
- 99.1% U (as UF₆)
- 0.1% other Ac
- 99% FP (extracted)

Initial fuel (10 year storage):
45% U (~1.3% enriched)
45% Pu (~68% fissile)
5% FP (only non-gasses)
5% minor Ac (mainly Am)
Salt and moderator

- Iterative optimization of geometry and spent fuel to Th ratio \((\text{Ac} \Rightarrow x\text{Th}+y\text{Ac}_{\text{SNF}} \text{ optimized to } K_{\text{eff max}} \approx 1.05)\)
- Using this tool, we were able to analyze several moderator and carrier salt candidates in a matter of days.
Control

1: Huge “instant” negative response, mainly from salt density change.
2: Small “slow” positive response from graphite heating. (Problematic)

Daily control using online chemistry.
Hourly control using 4 graphite fine-tuning rods ($\Delta k_{\text{eff}}=0.88\$=254 \text{ pcm}$)
Absorbing control rods for full shutdown only (= better neutron economy)
Core

Pot outer dimension: 190x190x340 cm³
Blanket thickness: 15-22 cm
Moderator: Graphite \((r=75 \text{ cm}, \ l=300 \text{ cm}) \)
Operation temperature **700°C-900°C**
Flow speed: 38.1 l/s
Salt volume: \(\sim 6 \text{ m}^3 \) \((\sim 5 \text{ m}^3 \text{ in core}) \)
Salt composition: \(78\text{LiF}-22\text{AcF}_4 \) (99.95% \(^7\text{Li}\))
- \(100\text{Ac} \sim 87\text{Th}+6\text{U}+6\text{Pu}+1\text{Ac}_m \) (starting)
- Melting point <568°C
- Salt evaporation starts: >1300°C
Running the cycle with our (thermal-epithermal) spectrum utilizes 83.1% of the fuel and produce 16.9% americium waste – but \(\text{eta}=0.88 \) (sustainable is \(\text{eta}>>1 \))
Running the cycle with our (thermal-epithermal) spectrum utilizes virtually all the fuel and produce **4.56 ppm** americium waste and \(\text{eta}=1.06 \) – however...
Neutron loss

Our thorium cycle has $\eta = 1.06$.

But we lose 10-13% neutrons.

The changing leakage over time, is caused by significant inventory changes from “over-fueling” (and Th removal) to keep the core critical.

Actinide component

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>30 years</th>
<th>60 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium</td>
<td>86.7%</td>
<td>59.6%</td>
<td>39.9%</td>
</tr>
<tr>
<td>Uranium</td>
<td>6.3%</td>
<td>21%</td>
<td>32%</td>
</tr>
<tr>
<td>Plutonium</td>
<td>6.3%</td>
<td>16%</td>
<td>23%</td>
</tr>
<tr>
<td>Minor Ac</td>
<td>0.6%</td>
<td>3.0%</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

| Fissile Pu/Pu | 67.8% | 53.1% | 48.5% |
60 years, at 50 MW\textsubscript{th}:
Net negative transuranic production of \(~1\) ton!
We do not have an underlying closed thorium fuel cycle.
But with the production of \(^{233}\text{U}\) we are getting closer.
Next step: SWaB -> CUBE
Seaborg WasteBurner -> Compact Used fuel BurnEr

Fix reactivity feedback from graphite expansion
- graphite slabs instead of salt pipes

Increase fine-tuning rods reactivity span
- move rods to a more central position

Reduce Pu (and Ac_{m}) inventory
- minimize salt volume (double blanket?)
- optimize moderator configuration
- remove Am online
- increase UF6 evaporation in fuel processing

Increase neutron economy
- reduce leakage (ultra compact)
- add outer reflector

Funding needed for two activities:
System engineering and multi physics
Chemistry system design and verification