Comparison of peripheral compression estimates using auditory steady-state responses (ASSR) and distortion product otoacoustic emissions (DPOAE)

Encina Llamas, Gerard; Epp, Bastian; Dau, Torsten

Publication date:
2014

Citation (APA):
Comparison of peripheral compression estimates using auditory steady-state responses (ASSR) and distortion product otoacoustic emissions (DPOAE)

Gerard Encina Llamas, Bastian Epp and Torsten Dau

Centre for Applied Hearing Research (CAHR), Technical University of Denmark (DTU)

ABSTRACT

The healthy auditory system shows a compressive input/output (IO) function as a result of healthy outer-hair cell function. Hearing impairment often leads to a decrease in sensitivity and a reduction of compression, mainly caused by loss of inner and/or outer hair cells. Compression is commonly estimated based on behavioral procedures (Plack et al., 2004), which are time consuming and rely on assumptions regarding the ability to selectively investigate cochlear processing or on objective recordings such as otoacoustic emissions (OAEs) (Neely et al., 2003), which allow to selectively study cochlear processing but the interpretation of results for individual data is challenging.

Auditory steady-state responses (ASSR) are another objective measurement method which allows fast, reliable and frequency-specific measurements of hearing function. It is hypothesized that compressive behavior is observed in normal-hearing (NH) listeners while in hearing-impaired (HI) listeners, sensitivity and compression are reduced. ASSR data are later compared to data from distortion-product otoacoustic emissions (DPOAE) recordings.

RESULTS

NH

HI

DPOAE in NH:

HI subjects show higher variability in the results.

Significant responses at input levels of 30 dB SL and above have been obtained for HI subjects.

ASSR I/O functions in HI subjects reflect the loss of sensitivity at lower stimulus levels.

CONCLUSIONS

• ASSR compression estimates for levels above 30 dB HL are consistent with psychoacoustic data.

• ASSR I/O functions recorded in HI subjects reflect the loss of sensitivity at lower input levels.

• Correlation analysis between ASSR and DPOAE recordings showed more compressive functions in ASSR than in DPOAE.

• Reduced compression at levels close to threshold (≤ 20 dB HL) could not be estimated using ASSR. Longer recording times are required to estimate compression with ASSR near threshold.

ACKNOWLEDGMENT

Thanks to G. Long and S. Heavin for the help and support in the DPOAE data processing. This work was supported by the Center for Applied Hearing Research (CAHR) at DTU.

REFERENCES


Neely et al. (2003). Comparison of auditory steady-state responses and distortion product otoacoustic emissions (DPOAE)

Gerard Encina Llamas, Bastian Epp and Torsten Dau

Centre for Applied Hearing Research (CAHR), Technical University of Denmark (DTU)

ABSTRACT

The healthy auditory system shows a compressive input/output (IO) function as a result of healthy outer-hair cell function. Hearing impairment often leads to a decrease in sensitivity and a reduction of compression, mainly caused by loss of inner and/or outer hair cells. Compression is commonly estimated based on behavioral procedures (Plack et al., 2004), which are time consuming and rely on assumptions regarding the ability to selectively investigate cochlear processing or on objective recordings such as otoacoustic emissions (OAEs) (Neely et al., 2003), which allow to selectively study cochlear processing but the interpretation of results for individual data is challenging.

Auditory steady-state responses (ASSR) are another objective measurement method which allows fast, reliable and frequency-specific measurements of hearing function. It is hypothesized that compressive behavior is observed in normal-hearing (NH) listeners while in hearing-impaired (HI) listeners, sensitivity and compression are reduced. ASSR data are later compared to data from distortion-product otoacoustic emissions (DPOAE) recordings.

RESULTS

NH

HI

DPOAE in NH:

HI subjects show higher variability in the results.

Significant responses at input levels of 30 dB SL and above have been obtained for HI subjects.

ASSR I/O functions in HI subjects reflect the loss of sensitivity at lower stimulus levels.

CONCLUSIONS

• ASSR compression estimates for levels above 30 dB HL are consistent with psychoacoustic data.

• ASSR I/O functions recorded in HI subjects reflect the loss of sensitivity at lower input levels.

• Correlation analysis between ASSR and DPOAE recordings showed more compressive functions in ASSR than in DPOAE.

• Reduced compression at levels close to threshold (≤ 20 dB HL) could not be estimated using ASSR. Longer recording times are required to estimate compression with ASSR near threshold.

ACKNOWLEDGMENT

Thanks to G. Long and S. Heavin for the help and support in the DPOAE data processing. This work was supported by the Center for Applied Hearing Research (CAHR) at DTU.

REFERENCES


Neely et al. (2003). Comparison of auditory steady-state responses and distortion product otoacoustic emissions (DPOAE)

Gerard Encina Llamas, Bastian Epp and Torsten Dau

Centre for Applied Hearing Research (CAHR), Technical University of Denmark (DTU)

ABSTRACT

The healthy auditory system shows a compressive input/output (IO) function as a result of healthy outer-hair cell function. Hearing impairment often leads to a decrease in sensitivity and a reduction of compression, mainly caused by loss of inner and/or outer hair cells. Compression is commonly estimated based on behavioral procedures (Plack et al., 2004), which are time consuming and rely on assumptions regarding the ability to selectively investigate cochlear processing or on objective recordings such as otoacoustic emissions (OAEs) (Neely et al., 2003), which allow to selectively study cochlear processing but the interpretation of results for individual data is challenging.

Auditory steady-state responses (ASSR) are another objective measurement method which allows fast, reliable and frequency-specific measurements of hearing function. It is hypothesized that compressive behavior is observed in normal-hearing (NH) listeners while in hearing-impaired (HI) listeners, sensitivity and compression are reduced. ASSR data are later compared to data from distortion-product otoacoustic emissions (DPOAE) recordings.

RESULTS

NH

HI

DPOAE in NH:

HI subjects show higher variability in the results.

Significant responses at input levels of 30 dB SL and above have been obtained for HI subjects.

ASSR I/O functions in HI subjects reflect the loss of sensitivity at lower stimulus levels.

CONCLUSIONS

• ASSR compression estimates for levels above 30 dB HL are consistent with psychoacoustic data.

• ASSR I/O functions recorded in HI subjects reflect the loss of sensitivity at lower input levels.

• Correlation analysis between ASSR and DPOAE recordings showed more compressive functions in ASSR than in DPOAE.

• Reduced compression at levels close to threshold (≤ 20 dB HL) could not be estimated using ASSR. Longer recording times are required to estimate compression with ASSR near threshold.

ACKNOWLEDGMENT

Thanks to G. Long and S. Heavin for the help and support in the DPOAE data processing. This work was supported by the Center for Applied Hearing Research (CAHR) at DTU.

REFERENCES


Neely et al. (2003). Comparison of auditory steady-state responses and distortion product otoacoustic emissions (DPOAE)