3D Neutron Diffraction

Cereser, Alberto; Strobl, M.; Hall, S.; Steuwer, A.; Tremsin, A.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær; Kiyonagi, R.; Shinohara, T.; Schmidt, Søren

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
3D Neutron Diffraction (3DND) is a new technique to study shape and orientation of the individual grains composing polycrystalline samples. 3DND enables non-destructive 3D grain mapping of mm- to cm-sized samples that is not possible using other techniques.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM</td>
<td><100nm</td>
</tr>
<tr>
<td>X-ray techniques</td>
<td>100nm to 1mm</td>
</tr>
<tr>
<td>3DND</td>
<td>1mm to 1cm</td>
</tr>
</tbody>
</table>

We are developing the algorithms for the 3D reconstruction based on datasets collected at BL18 (J-PARC), ENGIN-X (ISIS), ICON (PSI), and virtual experiments done using McStas [2].

Data analysis

Data acquired simultaneously by NF and FF detectors

NF

- CM of diff spots [3]
- \(\sigma_i \rightarrow (\sigma_j)_i, U_j \) [4]
- Sync diff, ext spots via ToF (X)
- \(U_j + 3D \) grain shape = 3D map

FF

- Binarise, locate [5] extinction spots
- FF covers 2.3 st \((\Gamma_{\text{max,1}}) < (\Gamma_{\text{min,1}}) \)

Time-of-flight 3DND

In June 2014 at BL18 we analysed an Armco Iron sample (99.8% purity), prepared to contain mm-sized grains. The sample was scanned over 180deg in 3deg steps, acquisition time per projection: ~ 1h.

Setup used at BL18. Data were acquired simultaneously by near- (indicated by red arrow) and far-field detectors.

Near-field detector

- MCP detector, 28x28\(\text{mm}^2 \)
- 1200 fr/s, pixel size 55\(\mu \text{m} \)
- Use: shape of the grains

Far-field detectors

- 36 det, each 256x256\(\text{mm}^2 \)
- Pixel size 4 mm, Q: 0.6-30.7
- Use: orientation of the grains