HIDIC – DESIGN, SENSITIVITY AND GRAPHICAL REPRESENTATION

Introduction
The internally heat integrated distillation column (HIDiC) is a potential replacement for the conventional distillation column for certain applications, offering reduced utility consumption of separation in more complex equipment. In addition, the conceptual design of the HIDiC is significantly more difficult and classical short-cut methods such as that of McCabe-Thiele are not eligible. This work provides an application of a proposed algorithm for systematically generating feasible HIDiC designs for the separation of isopropanol/water (IPA/W).

Design Algorithm
HIDIC design [1,2,3] is not uncomplicated. In this work, a pragmatic approach is presented to provide fundamental insights in the design of a HIDiC to identify its strength and limitations:

- CDIC Design (A=0, P_r/P_s=1)
- Thermal coupling
- Store current solution, and adjust A
- Simultaneously adjust Q_r and Q_n
- Are x_r=x_CDIc and x_r=x_CDIc
- NO
- Increase P_r/P_s
- NO
- Select optimum alternative and perform sensitivity analysis
- YES

Thermal Coupling
It is often observed that a large heat exchange area is required for obtaining high thermodynamic efficiency, and thus the amount of thermal coupling is preferably maximized. However, the sizes of the distillation column sections and their temperature profiles are important factors.

IPA/W is an example of a non-ideal mixture, which relative volatility varies from 1.8 in the top (x_b=0.57) to 42 in the bottom (x_b=0.001). See Figure 2 for column temperature profile.

Heat Transfer Area and Pressure Ratio
As thermal coupling has been established, two remaining design degrees of freedom exists: The internal, stage-wise heat exchange area (A) and the pressure ratio between sections (P_r/P_s).

The top coupled configuration is chosen since the most significant energy savings can be obtained. Since the energy consumption decreases along the isotherm, the maximum feasible heat exchange area is used leading to:

\[\frac{P_r}{P_s} = 1.35 \]
\[A = 0.215 \text{ m}^2 \]

A stop criteria for the maximum heat exchange area could be based on geometric considerations for the concentric HIDIC [1], which in this case is relatively small (Table 1).

Table 1. Evaluation of HIDIC design. Column area estimated by conventional method using 80% flooding.

<table>
<thead>
<tr>
<th>Section</th>
<th>Column Area/m²</th>
<th>Possible Area/1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectifier</td>
<td>0.0014</td>
<td>0.215</td>
</tr>
<tr>
<td>Stripper</td>
<td>0.0016</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Figure 2. Examples of contour plots of normalized total energy consumption defined by \((Q_n+2W)\frac{HIDIC}{QR}\) for different couplings.

Concluding Remarks
- A proposed algorithm for generating feasible HIDIC designs has been presented
- The algorithm has been applied on the separation of aqueous isopropanol with obtained energy reduction of 17%

References