Advances in the chemical vapor deposition (CVD) of Tantalum

Mugabi, James Atwoki; Bjerrum, Niels; Petrushina, Irina; Eriksen, Søren; Christensen, Erik

Publication date: 2014

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
CHEMICAL VAPOUR DEPOSITION (CVD) OF TANTALUM

- In Long narrow channels

James Atwoki Mugabi
PhD Student, DTU

Supervisors:
Niels J. Bjerrum
Irina Petrushina
Søren Eriksen
Erik Christensen

DTU Energy Conversion
Department of Energy Conversion and Storage
Why Tantalum?

Percentage Weight loss in 10 wt % HCl, room temperature, α-alumina abrasives and 1000 rpm for 168 hours.

Tantalum Coated Plate Heat Exchanger
System Description

\[ Ta_{(s)} + 2.5 Cl_2_{(g)} \rightarrow TaCl_5 \]

\[ TaCl_5 + \frac{5}{2} H_2 \rightarrow Ta + 5 HCl \]
Modeling

Long narrow Channel: Tubes

Fluid Flow: Navier Stokes

Diffusion: Fick’s Law

Chemical Reaction: Arrhenius

Adsorption: Langmuir
Results:

Experiment 800°C, 25 mbar

![Graph showing Tantalum Thickness vs. Position in tube for Try 1 and Try 2. The data points are scattered, indicating variations in thickness along the tube length.](image)
Experiment 850°C, 25 mbar

Tantalum Deposition Rate [µm/h]

Position in tube [m]

- Try 1
- Try 2
- Try 3
Experiment 900°C, 25 mbar

Tantalum Deposition Rate $[\mu m/h]$ vs. Position in tube [m]

- **Try 1**
- **Try 3**
- **Try 4**
Experiment 950°C, 25 mbar

Tantalum Deposition rate [µm/h]

Position in tube [m]

- Try 1
- Try 2
All Temperatures, 25 mbar

Tantalum Deposition rate [µm/h]

Position in tube [m]

- 800 C
- 850 C
- 950 C
- 900 C × 4
All Pressures, 800 °C

Position in the Tube [m]

Tantalum Layer Deposition Rate [µm/h]

- 25 mbar -- 50g Cl₂/ h
- 100 mbar -- 50g Cl₂/ h
- 300 mbar -- 30g Cl₂/ h
- 1 atm -- 30g Cl₂/ h
Model Fitting
Model

Fluid Flow: Navier Stokes

Diffusion: Fick’s Law

Adsorption: Langmuir

Chemical Reaction: Arrhenius

Geometry: 2D Axial Symmetry and 3D

Software: COMSOL MultiPhysics®
Mechanism

\[ \text{TaCl}_5(g) + \frac{1}{2} H_2 \rightarrow \text{TaCl}_4(g) \]

\[ \text{TaCl}_4(g) + \frac{1}{2} H_2 \rightarrow \text{TaCl}_3(g) \]

Adsorption: \[ H_2(g) \]

\[ \text{Ta} \text{(s)} + 4HCl(g) \]

Gas Phase Reaction

\[ \text{Ta} \text{(s)} + 3HCl(g) \]

Surface Reaction

\[ + HCl(g) \]
Model Fitting – 800 °C

Tantalum Deposition Rate um/h

Position in tube [m]
Model Fitting – 850 °C

Tantalum Deposition Rate um/h

Position in tube [m]
Model Fitting – 900 °C

Tantalum Deposition Rate μm/h

Position in tube [m]
Model Fitting – 950 °C
Application
CB30 – Channel
CB30 – Channel (X-Y Plane)
CB30 – Streamline: Velocity field Visualization
CB30 – Streamline: Velocity field Visualization
CB30 – 1st Run: Tantalum Layer Thickness
(i.e. Only treated from the right end)
CB30 – 1st Run: Tantalum Layer Thickness
(i.e. Only treated from the left end)
CB30 – 2nd Run: Tantalum Layer Thickness (i.e. Treated from the both ends)
CB30 – 2nd Run: Tantalum Layer Thickness (i.e. Treated from the both ends)
Thank you for your attention.