A convex programming framework for optimal and bounded suboptimal well field management

Dorini, Gianluca Fabio ; Thordarson, Fannar Ørn; Bauer-Gottwein, Peter; Madsen, H.; Rosbjerg, Dan; Madsen, Henrik

Published in:
Water Resources Research

Link to article, DOI:
10.1029/2011WR010987

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A convex programming framework for optimal and bounded suboptimal well field management

G. F. Dorini, F. Ö. Thordarson, P. Bauer-Gottwein, H. Madsen, D. Rosbjerg, and H. Madsen

Received 1 June 2011; revised 1 May 2012; accepted 9 May 2012; published 20 June 2012.

This paper presents a groundwater management model, considering the interaction between a confined aquifer and an unlooped Water Distribution Network (WDN), conveying the groundwater into the Water Works distribution mains. The pumps are controlled by regulating the characteristic curves. The objective of the management is to minimize the total cost of pump operations over a multistep time horizon, while fulfilling a set of time-varying management constraints. Optimization in groundwater management and pressurized WDNs have been widely investigated in the literature. Problem formulations are often convex, hence global optimality can be attained by a wealth of algorithms. Among these, the Interior Point methods are extensively employed for practical applications, as they are capable of efficiently solving large-scale problems. Despite this, management models explicitly embedding both systems without simplifications are rare, and they usually involve heuristic techniques. The main limitation with heuristics is that neither optimality nor suboptimality bounds can be guaranteed. This paper extends the proof of convexity to mixed management models, enabling the use of Interior Point techniques to compute globally optimal management solutions. If convexity is not achieved, it is shown how suboptimal solutions can be computed, and how to bind their deviation from the optimality. Experimental results obtained by testing the methodology in a well field located nearby Copenhagen (DK), show that management solutions can consistently perform within the 99.9% of the true optimum. Furthermore it is shown how not considering the Water Distribution Network in optimization is likely to result in unfeasible management solutions.

1. Introduction

This paper deals with optimization in water resources management. The steadily increasing overexploitation and inefficient management of the water resources have led to a number of water quality and related health problems worldwide. Optimization in both design and operation is widely recognized as a key element in water resources planning and management. In this paper, a groundwater management problem is considered, where the water is drawn from a field and conveyed to the Water Works distribution mains through a Water Distribution Network (WDN). The objective is to minimize the cost of pump operations, while fulfilling several management constraints. There are two main branches in the literature lying within the scope of this paper. One looks at groundwater management models; the other investigates operational efficiency in WDNs.

Groundwater management models are optimization frameworks where simulation of groundwater systems are employed. Stresses and the state of the aquifer are in those problems formalized as objective functions and constraints. Groundwater management models can be classified as solving problems involving groundwater flow only or solving problems involving both flow and transport of contaminants [Ahlfeld and Baro-Montes, 2008]. The interested reader may find comprehensive reviews of the literature related to the simulation-optimization approach in the following publications: Gorelick [1983]; Yeh [1992]; Ahlfeld and Heidari [1994]; Mays and Tung [1992]; Mays [1997]. Since the first combination of numerical simulation models with optimization for groundwater applications [Maddock, 1972], the range of optimization applications of groundwater problems has grown substantially [Wagner, 1995; Ahlfeld and Mulligan, 2000]. Many types of optimization problems have been studied in groundwater resources management, including pumping cost minimization [Sidiropoulos and Tolikas, 2004], water quality optimization, seawater intrusion and nitrate pollution, [Katsifarakis et al., 1999; Park and Aral, 2004; Katsifarakis and Petalas, 2006; Munciardi et al., 2007]. In many cases, pumping cost is a
fundamental element in aquifer restoration problems, [Shieh and Peralta, 2005; Matott et al., 2006; Papadopoulos et al., 2007]. Over the years, and also due to the improvement in the capability of commercial computers, researchers have experimented with the application of a wide range of optimization techniques to groundwater management models, such as linear and nonlinear programming [Bear, 1979; Rastogi, 1989; Theodossiou, 2004]; genetic algorithms and other evolutionary techniques e.g., [Ouzar and Cheng, 2000; Mantoglou et al., 2004; Kalwij and Peralta, 2008; He et al., 2008]; the outer approximation method [Spiliotopoulos et al., 2004]. A comparative study of different optimization methods applied to groundwater management problems is presented in papers by Mayer et al. [2002] and Fowler et al. [2008].

[1] In the field of operational efficiency in WDNs, pumping energy costs has always been acknowledged as a fundamental part of the operational cost of water distribution systems worldwide. Even a small overall increase in operational efficiency would result in significant cost savings to industry and municipalities [van Zyl et al., 2004]. Pump operation inefficiencies may be caused by inefficient pumps, inefficient pump combinations, and inefficient pump scheduling [Ormsbee et al., 1989]. Various optimization techniques have been applied to the operational optimization problem, including linear programming [Jowitt and Germanopoulos, 1992; Burnett et al., 1993]; nonlinear programming [Chase and Ormsbee, 1993; Yu et al., 1994]; dynamic programming [Lansey and Awumah, 1994; Nittivatananon et al., 1996]; fuzzy logic [Angel et al., 1999]; nonlinear heuristic optimization [Ormsbee and Reddy, 1995; Kansal et al., 2001]; flexible constraint satisfaction [Likeman, 1993]; and genetic algorithms (see e.g., van Zyl et al. [2004]).

[2] Even though optimization in groundwater management and pressurized WDNs have been extensively investigated, management models that are explicitly based on their dynamic interaction are still limited. In fact, in WDN optimization, aquifers are normally treated as underground reservoirs of given groundwater heads, whereas pressurized water hydraulics in the pipeline connecting well pumps is either neglected or simplified in groundwater management problems [McKinney and Lin, 1994, 1995]. Optimization of mixed management models is usually solved using heuristics. Tsai et al. [2009] employed Genetic Algorithms to solve a management model of a large-scale pressurized water distribution system and a three-dimensional groundwater model. It is important to note that heuristics do not guarantee global guarantee optimality.

[3] Nonheuristic optimization techniques are normally supported by proofs of optimality, however their applicability is subject to restrictive conditions. In groundwater flow management, problem formulations often involve linear or at most convex objective functions and convex constraints; a comprehensive illustration of this can be found in the work of Ahlfeld and Mulligan [2000]. For this class of problems, called “convex optimization problems,” optimality can be achieved by a wealth of algorithms. Among these, the Interior Point methods (IP) are extensively employed for practical applications, as they are often capable of solving problems within a number of operations not more than polynomial of the problem dimensions. An extensive review of convex programming and IP methods can be found in books by Ben-Tal and Nemirovski [2001], and by Boyd and Vandenberghe [2004].

[4] A management model that does not take the WDN into account yields a time series of pumping stresses that are optimal only under the assumption that nodes heads are fixed. The more the head loss due to the friction across the WDN, the more the solution is likely to be suboptimal. More importantly, the solution may not be even feasible in the real system, as the management constraints could be violated. For some systems, this can be overcome using approximations of the WDN. The most common way is to consider the additional head loss at each individual well node, as quadratic function of the WDN. The most common way is to consider the additional head loss at each individual well node, as quadratic function of the WDN. The most common way is to consider the additional head loss at each individual well node, as quadratic function of the WDN. The most common way is to consider the additional head loss at each individual well node, as quadratic function of the WDN. The most common way is to consider the additional head loss at each individual well node, as quadratic function of the WDN. The most common way is to consider the additional head loss at each individual well node, as quadratic function of the WDN. The most common way is to consider the additional head loss at each individual well node, as quadratic function of the WDN.
[5] In general, an IP method is an iterative procedure, where each step requires the calculation of the first and second-order derivatives of the objective functions and constraint functions, namely the \(m + 1 \) gradients \(\nabla f(x) \), \(\nabla c_i(x) \), and the \(m + 1 \) Hessians \(\nabla^2 f(x) \), \(\nabla^2 c_i(x) \). For many practical applications interior-point methods can solve the problem in a number of steps or iterations that is almost always in the range between 10 and 100. Ignoring any structural peculiarity of the problem (such as sparsity), each step requires on the order of

\[
\max \{ n^3, n^2 m, F \}
\]

operations, where \(F \) is the cost of evaluating the derivatives. Description of IP methods and descent methods, and further analysis of their complexity can be found in the work of Boyd and Vandenberghe [2004].

3. Simulation

[10] We consider a system composed of an aquifer, and \(N \) pumping wells, which are connected to the Water Works distribution mains through a Water Distribution Network (WDN). In each well, the groundwater is lifted using an electric submersible pump, which is controlled by setting the rotational speed of the impeller. As pump setting, we consider a variable \(a \) varying along the continuous interval \([0, 1]\), having a one-to-one relationship with the rotational speed: i.e., \(a = 1 \) is "maximum speed," and \(a = 0 \) is "pump switched off". The WDN has \(M \) nodes and one outlet (\(M \geq N \)), which are indexed in a way so that node \(i \geq 0 \) is the outlet, and the nodes from \(i = 1 \) to \(i = N \) are the ones connected to the pumping wells. We consider \(K \) time steps of equal duration \(\Delta t \), defining the management time horizon. A scheduling is a sequence of vectors \(a_1, \ldots, a_K \), of pump setting values for the \(N \) pumps \(a_i = (a_{i1}, a_{i2}, \ldots, a_{iN})^T \) at each time step \(k \). The pump settings vector \(a_k \) is constant throughout the interval \([k \Delta t, (k+1) \Delta t)\). The pumping rate \(q_{ik} \) of the \(i \)th pump at time \(k \), is function of the lifted head

\[
q_{ik} = g_i(a_{ik}, \nu_{ik} - h_{ik})
\]

where \(h_{ik} \) is the hydraulic head in the well, \(\nu_{ik} \) is the hydraulic head at the \(i \)th network node, and \(g_i(\cdot) \) the "pump characteristics" curve (or "head flow curve"), which is positive, invertible, and decreasing for fixed setting \(a_{ik} \). Those curves are empirically derived by measuring different combinations of lift head and pump rate values under "Standard Conditions." The effect of the pump setting variation is to modify the pump characteristic curve, and this occurs with different mechanisms, depending on the pump model. In general, the effect of increasing \(a_{ik} \) with constant head difference \(\nu_{ik} = h_{ik} \), causes an increment of the pumping rate \(q_{ik} \). Here the only assumption that we make is that \(q_{ik} \) is continuous and monotonically increasing with \(a_{ik} \). An example of pump characteristics is shown in Figure 1.

[11] The values of \(h_{ik} \) and \(\nu_{ik} \) depend on the groundwater hydraulics, the WDN hydraulics, and the way they interact. Let \(w_{ijk} \) be the flowrate from node \(i \) to node \(j \) at time \(k \); we conventionally consider as positive the flow direction from the high node index, to the low node index, i.e., \(w_{ijk} > 0 \) if

\[
\sum_{j=0}^{i} w_{ijk} - \sum_{j=i+1}^{M} w_{ijk} = \begin{cases} \sum_{n=1}^{N} q_{nk}, & i = 0 \text{ (outlet)} \\ q_{ik}, & 0 < i \leq N \text{ (pumps)} \\ 0, & N < i \leq M \text{ (nodes)} \end{cases}
\]

in every node \(i = 0, 1, \ldots, M \), and the energy loss equations

\[
\nu_{ik} - \nu_{jk} = f_{ij}(w_{ijk})
\]

in every pair of nodes \(i, j = 0, \ldots, M \). Functions \(f_{ij} \) depend on the pipe roughness and geometry, such as length, diameter, etc. If nodes \(i, j \) are connected, function \(f_{ij} \) is positive, nonlinear and convex \((d^2f_{ij}/d(w_{ijk})^2 \geq 0)\), and invertible. If nodes \(i, j \) are not connected, function \(f_{ij} \) is equal to zero. The outlet is a reservoir with constant level \(\nu_0 \). The water heads in the network nodes connected to the wells \(V_k = \{\nu_{i1}, \ldots, \nu_{iN}\} \) are obtained as function of the stresses \(q_{i1}, \ldots, q_{iN} \) by solving the nonlinear system of equations (3), (4), see e.g., Simpson and Elhagy [2011]. This is herein summarized by the expression

\[
V_k = V(q_k).
\]

Figure 1. Example of characteristic curves for a commercial variable frequency drive pump. Each curve is labeled with the value of the corresponding pump setting \(a_{ik} \in [0, 1] \).

\[i > j \] and \(< 0 \) otherwise. The WDN is subject to the continuity equations

\[i, j = 0, \ldots, M \]. Functions \(f_{ij} \) depend on the pipe roughness and geometry, such as length, diameter, etc. If nodes \(i, j \) are connected, function \(f_{ij} \) is positive, nonlinear and convex \((d^2f_{ij}/d(w_{ijk})^2 \geq 0)\), and invertible. If nodes \(i, j \) are not connected, function \(f_{ij} \) is equal to zero. The outlet is a reservoir with constant level \(\nu_0 \). The water heads in the network nodes connected to the wells \(V_k = \{\nu_{i1}, \ldots, \nu_{iN}\} \) are obtained as function of the stresses \(q_{i1}, \ldots, q_{iN} \) by solving the nonlinear system of equations (3), (4), see e.g., Simpson and Elhagy [2011]. This is herein summarized by the expression

\[
V_k = V(q_k).
\]

[12] The aquifer’s water head response to the pump stresses is obtained by solving the equations governing the groundwater flow. We denote with \(q_i(t) \) the continuous-time pumping stress in well \(i \), and with \(q(t) = (q_1(t), \ldots, q_N(t)) \) the \(N \) stresses. The continuous-time aquifer response to \(q(t) \) at well \(i \) is the piezometric water level \(h_i(t) \), and the collection of wells responses in continuous time is the vector \(h(t) = (h_1(t), \ldots, h_N(t)) \). The aquifer’s water head response to the pump stresses is described
by the equations governing the groundwater flow (see e.g., Ahlfeld and Mulligan [2000]):
\[S_t \frac{\partial h}{\partial t} = \nabla \cdot (\kappa \nabla h) + e + q \]
(6)
where \(S_t \), \(\kappa \) are the spatially variable specific storage coefficient \([L^{-1}]\) and hydraulic conductivity tensor \([L \cdot T^{-1}]\), respectively. The term \(e \) accounts for diffuse sources and sinks such as precipitation, evapotranspiration, and river/lakes/sea level fluctuations. We consider \(q(t) \) constant throughout each \(\Delta t \) interval, and therefore equivalent to a discrete-time series of stresses \(q_1, \ldots, q_N \). If both initial conditions and time-varying boundary conditions are known, the function \(h(t) \) and the corresponding discrete-time response \(h_1, \ldots, h_N \), are obtained by numerical integration of equation (6). In the case of confined aquifer, this is equivalent of the explicit linear relationship
\[h_k = \sum_{j=1}^{N} \sum_{k'=1}^{j} q_{jk'} \theta_{jk} + b_k \]
(7)
where \(b_k = (b_{k1}, \ldots, b_{kN})^T \) is the vector of the no-pumping heads. The constants \(\theta_{jk} \), called Impulse Response Function (IRF), quantify the head response of well \(k \) at time \(j \) to a stress \(k' \) at time \(k' \leq k \). The IRF is always non-positive, i.e.,
\[\theta_{jk} = \frac{\partial h_k}{\partial q_{jk}} \leq 0 \]
(8)
We make the assumption that the response in drawdown of well \(i \) to stress \(i \) is much deeper than the response to stresses from other wells \(i \neq j \)
\[\frac{\partial h_k}{\partial q_{jk'}} \gg \frac{\partial h_k}{\partial q_{ik'}} \]
This means that the Jacobian matrix \(\partial h_k/\partial q_k \) is ‘almost’ diagonal and thus negative definite. In real-life cases, this is always a realistic assumption (see e.g., Ahlfeld and Mulligan [2000]). Formula (7) can be performed efficiently, as the discrete IRF, \(\theta_{jk} \), can be determined at once for all \(j, k \) and then stored into the computer memory. Such approach is known as the ‘response matrix’ approach [Gorelick, 1983].

Discrete-time simulations of an aquifer-WDN system can be performed in two ways, depending on the input variable. One way is to determine the system response \(v_1, \ldots, v_K, h_1, \ldots, h_K, \) and the pumping stress series \(q_1, \ldots, q_N \), as function of a given scheduling \(a_1, \ldots, a_N \). The other way is to determine the scheduling and the system response, as function of a pumping stresses. Either ways, the simulation requires the ensemble of equations (2), (5), and (7) to be fulfilled. Note that the three equations are implicit in \(a_{ik} \); therefore, when the pumping stress is the input, they must be solved as a whole nonlinear system. In the case where the input are instead the pumping stress, the three equations can be solved separately. In fact, the heads in the WDN are explicit function of the stresses through equation (5). Similarly, the heads in the aquifer are explicit function of the stresses through equation (7). Equation (2) is not necessary to determine the system response, but it is still needed to verify that the stresses are within the capacity of the pumps. In other words, the feasibility condition
\[0 \leq q_{\alpha} \leq g_i (v_{\alpha} - h_k) \quad \forall i, k \]
(9)
must be fulfilled by the input stresses

4. Management Problem

In this section we define a management model for a confined aquifer, where the well pumps are interconnected through a WDN that has no loops. This is the typical situation where the wells are deployed over a vast rural territory, and an unlooped pipeline is normally the most cost-effective way to connect them to the Water Works mains. An important property of unlooped WDNs is that the heads are convex function of the stresses, namely function \(v_{jk} = V_k (q_k) \) is convex for all \(i, k \). We provide the proof of this in Appendix A. The goal of the management is to fulfill a set of constraints, with minimum operational cost.

We consider as operational cost of pump \(i \) at time \(k \), the amount of energy required to lift the water from the aquifer level \(h_k \) to the WDN node level \(v_{jk} \):
\[p_{ik} = \frac{\Delta h_k}{\eta_i} \rho_w (v_{jk} - h_k) \]
(10)
where \(\rho_w \) is the density of water \([M \cdot L^{-3}]\), and \(\eta_i \) is the efficiency of the \(i \)th pump \([\cdot]\). The total operational cost \(P \) is the total amount of energy used in all pumps, during the entire management period
\[P = \sum_{k=1}^{K} \sum_{i=1}^{N} p_{ik} \]
(11)
and it depends on the pump rates and the aquifer-WDN system response.

Constraints may take the form of any function of the hydraulic head, stresses and time, (see e.g., Ahlfeld and Mulligan [2000]). Some examples are: stress bounds (e.g., \(q_{\alpha} \leq \bar{q}_\alpha \)) accounting for the pumps maximum capacity or to meet regulation requirements; bounds on total stress (e.g., \(\sum_{i=1}^{N} q_{\alpha} \geq \bar{q}_\alpha \)) for water demand fulfillment; head bound constraints (e.g., \(h_k \leq \bar{h}_k \)) for mining and dewatering or subsidence control; head difference constraints (e.g., \(h_k - h_{k-1} \geq \Delta h_k \)) to control salt water or polluted water intrusion within the aquifer. All these constraints, in confined aquifers, are linear function of the stresses. Here we consider the more generic case of a set of \(N_c \) constraints in the form of convex nonlinear functions, denoted as
\[c_{\alpha}(q_1, \ldots, q_N) \leq 0 \quad j = 1, \ldots, N_c. \]
(12)
We refer to a set of inequalities (12) as “management constraints.”
The optimal management solution is a scheduling \(a_1, \ldots, a_K \), and the equivalent series of stresses \(q_1, \ldots, q_K \), attaining the minimum total operational cost \(\mathcal{P} \), while fulfilling the management constraints (12). Similarly as for the simulation problem described in section 3, also the management problem can be formulated in two different ways, i.e., considering the scheduling or the stresses as decision variables. Here we want to investigate whether those two, equivalent, problems are convex, so they can be solved using IP methods.

When the scheduling \(a_1, \ldots, a_K \) is given, the total operational cost is obtained by fulfilling equations (2), (5), (7), (10), and (11):

\[
\mathcal{P} = \sum_{k=1}^{K} \sum_{i=1}^{N} \frac{\Delta \rho_w}{\eta_i} q_{jk}(v_{ik} - h_k)
\]

\[
q_{jk} = g_i(a_k, v_i - h_i)
\]

\[
h_k = \sum_{j=1}^{K} \sum_{k=1}^{N} q_{jk}\theta_{jk,k-1} + b_k
\]

\[
v_{ik} = V_i(q_k)
\]

for all \(i = 1, \ldots, N_c \), and for all \(k = 1, \ldots, K \). Besides the computational burden of having to solve a large system of nonlinear equations in order to evaluate the objective function, this implicit relationship often causes \(\mathcal{P} \) to be nonconvex with the decision variable. Clearly this may vary from case to case, and it may also depends on how the pump characteristics \(g_i() \) depend on the pump settings \(a_k \). In general, however, the convexity of the objective function cannot be guarantee. Similarly, also the management constraints (12), which are implicit function of the decision variable, could be not convex. We conclude that IP methods do not guarantee optimality if the scheduling is the decision variable.

When the pump rates \(q_1, \ldots, q_K \) are the decision variable, the pump characteristics equations (2) are not needed to calculate the aquifer-WDN systems response, hence equations (5), (7), (10), and (11) can be put together into one explicit expression

\[
\mathcal{P} = \sum_{k=1}^{K} \sum_{i=1}^{N} \frac{\Delta \rho_w}{\eta_i} q_{ik}(v_{ik} - h_k)
\]

\[
q_{ik} = g_i(a_k, v_i - h_i)
\]

\[
h_k = \sum_{j=1}^{K} \sum_{k=1}^{N} q_{jk}\theta_{jk,k-1} + b_k
\]

\[
v_{ik} = V_i(q_k)
\]

The convexity of (13) can be proved based on the convexity of \(V_i(q_k) \), and the fact that the Jacobian matrix \(\partial h_k / \partial q_k \) is negative definite. Also this proof is in Appendix A.

Besides the management constraints \(c_i() \), that are convex with the stresses, the problem definition also requires the stresses to be within the capacity of the pumps, hence conditions (9) must be included within the set of constraints, and their convexity must be proved.

We reformulate the pumps capacity constraints, considering that function \(g_i() \) is invertible within the pump’s range,

\[
0 \leq v_{ik} - h_k \leq g_i^{-1}(1, q_k) \quad \forall i, k
\]

Expressions (14) and (9) are equivalent, as they both imply the point \((v_{ik} - h_k, q_k) \) to have positive coordinates, and be underneath the pump characteristic curve, as illustrated on Figure 2. The left-hand side of condition (14)

\[
v_{ik} \geq h_k \quad \forall i, k
\]

can be ignored, as there is no reason to expect the aquifer’s head \(h_k \) to exceed or even just to approach the head levels in the network nodes \(v_{ik} \). The right-hand side of equation (14)

\[
v_{ik} - h_k - g_i^{-1}(1, q_k) \leq 0 \quad \forall i, k
\]

defines what we call “network constraints.” As mentioned at the beginning of this section \(v_i = V_i(q_k) \) is a convex function. The aquifer heads in the wells \(h_k \) are also convex, as linear function of the stresses, therefore the condition for the constraint (15) to be convex is that \(-g_i^{-1}(1, q_k)\) is convex. Conversely \(g_i() \) must be concave.

Although in principle this should reflect the true geometry of the pump characteristics, in reality those curves sometimes are not perfectly concave. This concept is clarified in section 5. In this section, perfect concavity of the pumps characteristic is assumed, hence the resulting problem formulation

\[
\mathcal{P}^* = \min_{q_1, \ldots, q_k} \sum_{k=1}^{K} \sum_{i=1}^{N} \frac{\Delta \rho_w}{\eta_i} q_{ik}(v_{ik} - h_k)
\]

subject to:

\[
\begin{align*}
v_{ik} & = V_i(q_k) \\
h_k & = \sum_{j=1}^{K} \sum_{k=1}^{N} q_{jk}\theta_{jk,k-1} + b_k \\
c_i(q_1, \ldots, q_k) & \leq 0 \\
v_{ik} - g_i^{-1}(1, q_k) - h_k & \leq 0
\end{align*}
\]

Figure 2. Two equivalent formulations of the pumps capacity constraints. A point is feasible if it has positive coordinates \((v_{ik} - h_k, q_k) \), and it lies below the line \(q_{ik} = g_i(1, v_{ik} - h_k) \).
is a problem of convex optimization having $N K$ decision variables, and $(N + N) K$ constraints. The problem can be solved using IP methods, yielding the optimal stresses $q_{1}^{*}, \ldots, q_{K}^{*}$. The corresponding optimal scheduling $a_{1}^{*}, \ldots, a_{K}^{*}$ is obtained from the characteristics solving equation

$$q_{ik}^{*} = g_{r}(a_{ik}, V_{i}(q_{ik}^{*}) - \sum_{j=1}^{N} \sum_{k=1}^{k} q_{jk}^{*} a_{jk} - b_{ik})$$

(18)

for all $i = 1, \ldots, N$ and $k = 1, \ldots, K$. Equation (18) has one solution, as for given stresses, the head difference $v_{ik} - h_{ik}$ is given, thus a_{ik} is monotonic with q_{ik}.

5. Suboptimality and Bounds

[25] The applicability of IP methods to yield the optimal solution of the management problem (16) s.t. (17), is subject to the condition that $-g_{i}^{-1}(1,q_{ik})$ is convex, or equivalently, that full-speed pump characteristics $g_{i}(1,v_{ik} - h_{ik})$ are concave.

[26] For a fixed setting $a_{ik} \in [0,1]$, pumps characteristics $g_{i}(a_{ik}, v_{ik} - h_{ik})$ are curves that typically decrease more than linearly with $v_{ik} - h_{ik}$, meaning that either they are concave, or they can be well approximated by concave functions. When the case is the latter, characteristics can be described as strictly unbounded lines following the pattern of a some concave functions, (Figure 1). More formally, in this case, characteristics are defined to be almost concave curves, and function $-g_{i}^{-1}(1,q_{ik})$ are almost convex [Bot et al., 2007]. We denote with $-G_{i}^{-1}(q_{ik})$. The largest convex function not exceeding $-g_{i}^{-1}(1,q_{ik})$, or its ‘convex hull function’. Let δ_{i} be the distance

$$\delta_{i} = \min_{q} \left(-g_{i}^{-1}(1,q) + G_{i}^{-1}(q) \right)$$

then the almost convex function $-g_{i}^{-1}(1,q_{ik})$ is bounded between two convex functions being δ_{i} apart

$$- G_{i}^{-1}(q_{ik}) + \delta_{i} \leq - g_{i}^{-1}(1,q_{ik}) \leq - G_{i}^{-1}(q_{ik})$$

as illustrated in Figure 3. The distance δ_{i} is a measure of the closeness to convexity, if $-g_{i}^{-1}(1,q_{ik})$ is convex, then $\delta_{i} = 0$, hence $-g_{i}^{-1}(1,q_{ik}) = - G_{i}^{-1}(q_{ik})$.

[27] When the assumption of perfect concavity of the pumps characteristic is not valid, then the network constraints (15) are almost convex, hence the management problem is not convex. Here we define the alternative convex problem by replacing the network constraints (17) with the (convex) condition

$$v_{ik} = V_{i}(q_{ik})$$

$$h_{ik} = \sum_{j=1}^{N} \sum_{k=1}^{k} q_{jk} a_{jk} - b_{ik}$$

$$c_{jk}(q_{1}, \ldots, q_{k}) \leq 0 \quad j = 1, \ldots, N_{c}$$

$$v_{i} - h_{ik} - G_{i}^{-1}(q_{ik}) + \delta_{i} \leq 0$$

(19)

we denote with $\bar{q}_{1}, \ldots, \bar{q}_{K}$ the optimal stresses, and with \bar{P} the objective function value. We note that the domain of $D' \subset \mathbb{R}^{NK}$ fulfilling conditions (19) is entirely included within the domain $D \subset \mathbb{R}^{NK}$ fulfilling the network constraints (17), namely $D' \subseteq D$. Considering that the optimal scheduling $\bar{q}_{1}, \ldots, \bar{q}_{K} \in D$ attains the minimum (16) on both D and D', if $\bar{q}_{1}, \ldots, \bar{q}_{K} \in D/D'$, then the stresses $\bar{q}_{1}, \ldots, \bar{q}_{K}$ are suboptimal. Consequently $\bar{q}_{1}, \ldots, \bar{q}_{K}$ is certainly feasible for problem (16) s.t. (17), and \bar{P} is at most as good as the optimum, i.e., $\bar{P} \geq \bar{P}^*$. We argue that the shape of $-g_{i}^{-1}(1,q_{ik})$ for commercial pumps are typically either convex, or almost convex curves with small δ_{i}. Consequently we would expect the distance between \bar{P} and \bar{P}^* to be small. Although we cannot determine this distance, we can use the same approach to estimate an upper bound of it, namely an $\epsilon \geq 0$ such that $\bar{P} \geq \bar{P}^* \geq (1 - \epsilon)\bar{P}$.

[28] We solve problem (16) subject to the following constraints

$$v_{ik} = V_{i}(q_{ik})$$

$$h_{ik} = \sum_{j=1}^{N} \sum_{k=1}^{k} q_{jk} a_{jk} - b_{ik}$$

$$c_{jk}(q_{1}, \ldots, q_{k}) \leq 0 \quad j = 1, \ldots, N_{c}$$

$$v_{i} - h_{ik} - G_{i}^{-1}(q_{ik}) \leq 0$$

(20)

Similarly to the previous argument, the domain of $D' \subset \mathbb{R}^{NK}$ fulfilling conditions (20) entirely contains the domain $D' \subset \mathbb{R}^{NK}$ fulfilling (19), namely $D' \subseteq D$. Then the optimal solution of problem (16) s.t. (20) has a total energy consumption that is at most as great as \bar{P}, hence it is equal to $(1 - \epsilon)\bar{P}$, with $\epsilon \geq 0$. The same domain also contains D, namely, $\bar{P} \subseteq D \subseteq D'$, then $(1 - \epsilon)\bar{P}$ is at most as great as \bar{P}^*, hence $(1 - \epsilon)\bar{P} \leq \bar{P}^*$. Suboptimal solutions will be close to optimal if ϵ is small. Clearly, the more $-g_{i}^{-1}(1,q_{ik})$ are similar to the convex hull function $-G_{i}^{-1}(q_{ik})$, namely the smaller the values of $\delta_{i}, i = 1, \ldots, N$, the smaller ϵ.

[29] Suppose the bound is loose, for instance $\epsilon = 0.05$. Then in the worst case scenario, the minimum total energy \bar{P}' could be up to 5% less than \bar{P}, and it would be worth
trying to improve the solution using some local search algorithm, i.e., attempting to solve problem (16) s.t. (17), by starting from \(\mathbf{q}_1, \ldots, \mathbf{q}_K \) as initial guess. The local search may be performed by any heuristics, such as Genetic Algorithms. Here we use a simple gradient descent repeat
1. \(\Delta \mathbf{q}_k := -\nabla \mathcal{P}(\mathbf{q}_k) \) for All \(k \)
2. \(\mathcal{P} := \min_{t} \mathcal{P}(\mathbf{q}_1 + t \Delta \mathbf{q}_1, \ldots, \mathbf{q}_K + t \Delta \mathbf{q}_K) \)
subject to:
\[
v_k = V(\mathbf{q}_k + t \Delta \mathbf{q}_k)
\]
\[
h_k = \sum_{j=1}^{N} \sum_{k'=-1}^{k} (\mathbf{q}_{jk'} + t \Delta \mathbf{q}_{jk'}) \theta_{jk'-k+1} + b_k
\]
\[
c_{jk}(\mathbf{q}_1 + t \Delta \mathbf{q}_1, \ldots, \mathbf{q}_K + t \Delta \mathbf{q}_K) \leq 0; \quad j = 1, \ldots, N_e
\]
\[
v_i - h_a - g^{-1}(\mathbf{q}_{jk} + t \Delta \mathbf{q}_{jk}) \leq 0
\]
3. \(\mathbf{q}_k := \mathbf{q}_k + t \Delta \mathbf{q}_k \)
until \(t = 0 \),
where \(\mathcal{P} \) is optimized along the gradient direction, until the boundaries of the feasible space defined by constraints (17) are reached. So in this case the IP methods are used as the global portion of a local-global search algorithm.

6. Implementation of the Methodology

[30] The described methodology is implemented and included within the WELLNES software package (A. Falk and H. Madsen, A well field model based on a dynamic coupling between a pipe network model and a groundwater model, submitted to Environmental Modelling Software, 2012). WELLNES contains and coordinates the interactions between a physically based groundwater model (MIKE-SHE) ([Graham and Butts, 2006]), and a WDN model (EPANET, Rosman [2000]). MIKE-SHE simulates dynamic exchange of water between all major hydrological components, e.g., surface water, soil water and groundwater. It solves basic equations governing the major flow processes within the study area. The spatial and temporal variation of meteorological, hydrological, geological and hydrogeological data across the model area is described in gridded form for the input as well as the output from the model. EPANET is a computer program that performs extended period simulation of hydraulic behavior within pressurized pipe networks. It is released by the United States Environmental Protection Agency, and it is freely distributed.

[31] In a groundwater model, wells are simulated as sink terms (equation (6)) in a numerical cell (A. Falk and H. Madsen, submitted, 2012). This ensures a correct water balance but does not give a good representation of the water level in the well.

[32] Close to a well there is a steep gradient in hydraulic head, which would require a high resolution for the groundwater model to resolve, increasing accuracy then increases computational complexity. WELLNES overcomes this problem, by interposing a well drawndown engine, named WELL, which is based on the same equations as used by the drawdown-limited MODFLOW Multi-Node Well package [Halford and Hanson, 2002]. A head loss equation is set up for each cell penetrated by the well. The system of equations is closed with the condition that the sum of flows from each cell equals the total extraction from the well. The equations are the same, but the implementation differs from that in MODFLOW, as the present implementation uses the well head calculated by the groundwater model in the former time step and the pump flow for the current time step as forcings. The WELL engine predicts the water drawdown without requiring a high model resolution around the wells.

[33] WELLNES is equipped with a library, called OPTIWELL, for solving optimal management problems in confined aquifers, described in section 4. The OPTIWELL workflow, illustrated in Figure 4, is a framework iterating through three distinct phases: (1) preprocessing, (2) optimization, (3) scheduling. Preprocessing: MIKE-SHE computes the impulse response functions \(\theta_{jk} \) and heads \(h_a \) by measuring, using MIKE-SHE simulations, the aquifer response at wells to impulse pump signals. Procedures to derive IRFs using a simulation model are described by Heidari [1982]. In this phase, Assumption of perfect convavity of the pumps characteristic is checked; the convex hull function \(-G_{ij}^{-1}(q_{jk})\) is constructed using the characteristics of the pumps connecting the WDN, and the closeness \(\delta_i \) of the network constraints to convexity is measured. Optimization: OPTIWELL solves the management problem of equation (16) s.t. constraints (19). The IP method used is the barrier method, a comprehensive description of this method can be found in the book by Boyd and Vandenberghe [2004]. If the network constraints are not convex, the solution \(\mathbf{q}_1, \ldots, \mathbf{q}_K \) coincides with the optimal stresses \(\mathbf{q}_1, \ldots, \mathbf{q}_K \), hence the solution of the original problem (16) s.t. (17). If the network constraints are convex, \(\mathbf{q}_1, \ldots, \mathbf{q}_K \) is improved using the local search scheme described in section 5. The assessment of a lower bound \((1 - \epsilon) \mathcal{P}^{*} \leq \mathcal{P}\) is computed using IP methods to solve problem (16) s.t. (20). Scheduling: OPTIWELL computes the scheduling from the optimal (or suboptimal) stresses solving equation (18).

[34] Normally, the preprocessing is done only at once, to set up the case study (see Figure 4). Solving the same problem for different sets of constraints and/or pumps models only requires optimization and scheduling. Preprocessing is only required again when the case study changes. For instance, to consider different boundary conditions (rain, surface water, barometric pressure, etc.), or to include more wells, or to move wells to different positions. Section 7 describes the application of WELLNES in a real case study.

7. Søndersø Case Study

[35] The methodology described in this paper is tested in a part of the well field of Søndersø, located northwest of Copenhagen (DK) with an annual discharge of 5.3 \(\times 10^6 \) m\(^3\) of water. The system comprises two groups of pumping wells, connected in series by a WDN. As shown in Figure 5, there are 9 wells located in the East (labeled starting with 'Ø'), and 3 located in the West (V1A, V2A, V3A), for a total of \(N = 11 \) pumping wells. The groundwater model is a local model nested within a regional model, Kürstein et al. [2009].

[36] The local model covers approximately an area of 4.3 \(\times 3.7 \) km, and the grid size is 50 m. The model contains 8 geological layers (five different clay layers, a sand layer and two limestone layers). As it can be seen in Figure 6, the pumping is mainly done from the chalk layers and partly from the sand layer; the aquifer is confined.

[37] The simulation period is 8 days from 18 December 2001 00:00 to 26 December 2001 00:00, the initial
The characteristic $g_i(v_{ik} - h_{ik})$ are almost convex, hence $-g_i^{-1}(q_{ik})$ are almost concave. The closeness to convexity can be observed in Figure 7, where all curves are tightly bounded between the convex hull function $-G_i^{-1}(q_{ik})$ and the translated $-G_i^{-1}(q_{ik}) + b_i$.

In what follows the management problem is defined and solved using the scheme in Figure 4, determining the optimized stresses q_1, \ldots, q_K, the total energy consumption P, and the optimality lower bound $(1 - \epsilon)P$. The benefit of accounting for the WDN in optimization, can be here assessed by comparison with the results obtained solving...
the same problem but without considering the WDN. Namely, we solve a problem

$$\mathbf{q}_1, \ldots, \mathbf{q}_K = \arg \min_{\mathbf{q}_1, \ldots, \mathbf{q}_K} \sum_{k=1}^{K} \sum_{i=1}^{N} \Delta \rho_i q_i (v_{ik} - h_{ik})$$

subject to:

$$v_{ik} = v_0$$

$$h_{ik} = \sum_{j=1}^{N} \sum_{i=1}^{j} \rho_i q_{ik} + \bar{b}_{ik}$$

$$c_{ik} (\mathbf{q}_1, \ldots, \mathbf{q}_K) \leq 0$$

where the WDN node heads v_{ik} are replaced by the fixed outlet level v_0. The total energy consumption P is obtained by simulating the stresses $\mathbf{q}_1, \ldots, \mathbf{q}_K$ in the aquifer-WDN system, i.e., $\mathbf{P} = \mathbf{P} (\mathbf{q}_1, \ldots, \mathbf{q}_K)$. We then compare \mathbf{P} with \mathbf{P}_k, and $\mathbf{q}_1, \ldots, \mathbf{q}_K$ with $\mathbf{q}_1, \ldots, \mathbf{q}_K$.

Furthermore, we also verify whether or not $\mathbf{q}_1, \ldots, \mathbf{q}_K$ fulfills the network constraints $V_i (\mathbf{q}_k) - g_i (\mathbf{q}_k) - h_{ik} \leq 0$, as they are not included within the constraint set (21).

[39] We consider a water supply problem with fixed water demand d over the management period. There is an old military airfield, located west of the well field, which is known to be contaminated, although the extent of the contamination is unknown. The well field abstracts water from a large area, and thus it is exposed to the risk of pollution from the airfield. A sustainable management strategy should take this into account. We do this by imposing head difference constraints over three monitoring wells numbered as 12, 13 and 14, (see Figure 5), respectively. Two head difference constraints are defined, Δh_1, between wells 13–12, and Δh_2, between wells 13–14, respectively.

In summary, for each time step $k = 1, \ldots, K$, there are $N_c = 3$ management constraints, which are linear inequalities

$$c_1 (\mathbf{q}_k) = d - \sum_{i=1}^{N} q_{ik} \leq 0,$$

$$c_2 (\mathbf{q}_1, \ldots, \mathbf{q}_K) = -h_{13,k} + h_{12,k} + \Delta h_1 \leq 0,$$

$$c_3 (\mathbf{q}_1, \ldots, \mathbf{q}_K) = -h_{13,k} + h_{14,k} + \Delta h_2 \leq 0.$$

We solve the problem for different values of demand d, while imposing the head difference constraints (23) and (24) to be non negative, hence $\Delta h_1 = \Delta h_2 = 0$ meters. Clearly this is a simplification as in actual practice, one would use a “safety factor,” and also impose several head difference constraints, to assure that contamination does not pose a threat.

[40] Table 2 shows the results of the management problem with $K = 31$ decision time steps with duration $\Delta t = 6$ h, for

Table 1. Pump Specification in Søndersø Well Field

<table>
<thead>
<tr>
<th>Wells</th>
<th>Type</th>
<th>Capacity [m³ d⁻¹]</th>
<th>η</th>
<th>δ [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 4, 5, 8, 9, 11</td>
<td>SP77-4</td>
<td>2449</td>
<td>0.79</td>
<td>0.57</td>
</tr>
<tr>
<td>3, 6</td>
<td>SP30-4</td>
<td>2421</td>
<td>0.78</td>
<td>1.14</td>
</tr>
<tr>
<td>7</td>
<td>SP46-5</td>
<td>941</td>
<td>0.7</td>
<td>0.33</td>
</tr>
<tr>
<td>10</td>
<td>SP60-4</td>
<td>2419</td>
<td>0.7</td>
<td>1.60</td>
</tr>
</tbody>
</table>

Figure 7. Solid lines are $-G_i^{-1} (q_{ik})$ curves of the four pump models installed in Søndersø. Dashed curves are the convex hull functions $-G_i^{-1} (q_{ik})$. Dash-dotted curves are upper convex bounds $-G_i^{-1} (q_{ik}) + \delta_i$.

Figure 6. Cross sections along the lines AB and DC of Figure 5. Wells positions and filter depth are shown.
Table 2. Results of Management Optimization in Søndersø With $K = 31$ Time Steps

<table>
<thead>
<tr>
<th>d [$m^3 s^{-1}$]</th>
<th>\mathcal{P} [kWh m$^{-3}$]</th>
<th>WDN Overhead [%]</th>
<th>ϵ [%]</th>
<th>\mathcal{P} [kWh m$^{-3}$]</th>
<th>Violated Constraints [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.127</td>
<td>18.12</td>
<td>0</td>
<td>0.127 (+0.009%)</td>
<td>0</td>
</tr>
<tr>
<td>0.08</td>
<td>0.157</td>
<td>21.41</td>
<td>0</td>
<td>0.157 (+0.22%)</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.177</td>
<td>23.26</td>
<td>0.024</td>
<td>0.177 (+0.21%)</td>
<td>8.2</td>
</tr>
<tr>
<td>0.12</td>
<td>0.197</td>
<td>24.65</td>
<td>0.016</td>
<td>0.198 (+0.51%)</td>
<td>8.5</td>
</tr>
<tr>
<td>0.15</td>
<td>0.228</td>
<td>26.09</td>
<td>0.02</td>
<td>0.231 (+0.94%)</td>
<td>17.3</td>
</tr>
<tr>
<td>0.16</td>
<td>0.239</td>
<td>26.41</td>
<td>0.025</td>
<td>0.241 (+0.92%)</td>
<td>26.7</td>
</tr>
<tr>
<td>0.17</td>
<td>0.249</td>
<td>26.69</td>
<td>0.025</td>
<td>0.251 (+0.88%)</td>
<td>27.3</td>
</tr>
<tr>
<td>0.18</td>
<td>0.259</td>
<td>26.93</td>
<td>0.025</td>
<td>0.261 (+0.76%)</td>
<td>31.7</td>
</tr>
</tbody>
</table>

Numbers in brackets are the percentage difference between \mathcal{P} and $\overline{\mathcal{P}}$. The violated constraints are the percentage of the $NK = 341$ network constraints.

8. Discussion and Conclusions

A methodology for multiperiod optimal management of systems of confined aquifers interacting with an unlooped pressurized Water Distribution Network (WDN), has been presented and discussed. Discrete-time simulations of an aquifer-WDN system require the WDN continuity and the energy equations to be solved altogether with the groundflow equation, and with the pumps characteristic equations. The type of pumps here considered are “Variable Speed,” also called “Variable Frequency Drive Pumps.” The shape of the characteristic curves of those pumps can be modified by operating the pumps settings. The system can be either controlled in terms of pumps settings, regulating the characteristic curves, or in terms of pumping stresses. As described in section 3, if one wants to simulate an input series of pump settings (scheduling), the three sets of equations must be solved as a whole system of nonlinear equations. If the input is a series of pumping stresses, then the WDN and the groundflow equation can be solved separately, and the pump characteristics are not needed to determine the system response. However they are still necessary to verify the feasibility of the input pumping stresses, which must be within the capacity of the pumps.

In section 4, the groundwater management problem was formulated as a minimum operational cost, subject to constraints, for a system of a confined aquifer, connected to WDN which has no loops. The applicability of IP methods was assessed by investigating the conditions, under which the problem is convex. The conditions identified are: the decision variable must be the stresses, and not the settings; the management constraints must be convex function of the stresses; and the pump characteristic curves must be concave function of the head difference. This latter condition was discussed in section 5, arguing that even when the characteristics curves of commercial pumps are not
concave, normally they are almost concave. So even when the problem is not convex, it is almost convex, and suboptimal solutions and bounds on their deviation from the optimal solution can be obtained, again by using IP methods.

The optimal management is performed according to the OPTIWELL framework, consisting of three phases: preprocessing, optimization and scheduling. The methodology is tested on the real case study of Søndersø, in Denmark. Results show that even when sufficient conditions for the convexity of the problem are not met, suboptimal solutions can still be obtained with an energy consumption less than 0.01% off of the of the optimal solution. The advantage of considering the WDN within the management problem of an aquifer system, was also assessed. The presence of the WDN causes a significant overhead (up to 25%) in energy consumption.

It was also shown that even if the difference between taking and not taking into account the WDN in optimization may results in a slight increase of energy consumption ($< 1\%$), the time pattern of the optimal pumping stresses may be a significantly different. More importantly, the main drawback of not taking the WDN into account in optimization, is that the optimized stresses may be not feasible for the WDN, as the management constraints may be violated.

The IP method used, the barrier method, required a number of Newton step iterations which turned out to be

\[\text{Figure 8. Optimized management solutions when the water demand } d \text{ is equal to } 0.16 \text{ m}^3 \text{ s}^{-1}. \] The left chart shows the solution obtained accounting for the effect of the WDN. The right chart shows the solution obtained neglecting the WDN.
weakly dependent on the number of decision variables and constraints. Clearly this is expected not to be true for problems with larger number of wells, time steps and constraints; but it also suggests high capability of IP methods to deal with large-scale problems. The resulting computing time was then mainly influenced by the time taken to compute the objective function, the constraints functions and their first and second-order derivatives.

Table 3. Number of N Steps and Time F for Computing the Objective Functions, Constraint Functions, and All Their First- and Second-Order Derivatives

<table>
<thead>
<tr>
<th>K</th>
<th>Decision Variables</th>
<th>Constraints</th>
<th>$d = 0.08$</th>
<th>$d = 0.12$</th>
<th>$d = 0.18$</th>
<th>Evaluation Time F [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>66</td>
<td>84</td>
<td>74</td>
<td>77</td>
<td>72</td>
<td>0.0205</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>140</td>
<td>80</td>
<td>79</td>
<td>78</td>
<td>0.0362</td>
</tr>
<tr>
<td>15</td>
<td>165</td>
<td>210</td>
<td>72</td>
<td>88</td>
<td>74</td>
<td>0.0746</td>
</tr>
<tr>
<td>20</td>
<td>220</td>
<td>280</td>
<td>75</td>
<td>88</td>
<td>73</td>
<td>0.1324</td>
</tr>
<tr>
<td>26</td>
<td>286</td>
<td>364</td>
<td>78</td>
<td>101</td>
<td>74</td>
<td>0.2007</td>
</tr>
<tr>
<td>31</td>
<td>341</td>
<td>434</td>
<td>68</td>
<td>81</td>
<td>63</td>
<td>0.3120</td>
</tr>
</tbody>
</table>

*Water demand d is in m3 s$^{-1}$.
Appendix A: Derivations

In what follows symbols A, B, ... denote matrices. We show that the Hessian of both V_r and \mathcal{P} are referable to a particular type of matrix, constructed as follows

$$ M = \sum_{i=1}^{N} z_i O_i, \quad (A1) $$

where z_i are nonnegative scalars and the i,j element of matrix O_i is

$$ O_{ij} = \begin{cases} 1 & i \geq r \text{ or } j \geq r \\ 0 & \text{otherwise} \end{cases} \quad (A2) $$

for example, for $N = 4$,

$$ O_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}. $$

We refer to a matrix like M as a ‘matrix of type O’. These matrices are diagonal and their elements O_{ij} are non-decreasing as i and/or j increase:

$$ O_{i,k} = \sum_{r=1}^{\min(i,j)} z_r, \quad (A3) $$

The O matrices are positive definite, as for any vector $x \in \mathbb{R}^N$, the quadratic form $x^T M x$ is always positive, i.e.,

$$ x^T M x = z_1 \left(\sum_{i=1}^{N} x_i \right)^2 + z_2 \left(\sum_{i=2}^{N} x_i \right)^2 + \cdots + z_N x_N^2 \geq 0. $$

The total energy consumption $\mathcal{P} = \sum_{k=1}^{K} \sum_{i=1}^{N} P_{ik}$, is function of the stresses q_1, \ldots, q_N. Since the aquifer is confined, then $h_k = \sum_{i=1}^{N} \sum_{k' \neq k} q_{ik} \theta_{ik} + h_{ik}$, and the Hessian can be put in the form of a K-by-K lower triangular block matrix, whose 4th diagonal block $B_{k,k}$ is a $N \times N$ matrix, whose i,j element is

$$ B_{ik,k} = \frac{\partial^2 \mathcal{P}}{\partial q_i \partial q_k} = \frac{1}{\eta_j} \frac{\partial h_k}{\partial q_i} + \frac{1}{\eta_k} \frac{\partial h_k}{\partial q_j} - \frac{\alpha}{\eta_j} \frac{\partial h_k}{\partial q_i} \frac{\partial h_k}{\partial q_j} + \sum_{r=1}^{N} \frac{\partial^2 V_r}{\partial q_i \partial q_k} \quad (A4) $$

where α is equal to 2 if $i = j$ and 1 otherwise. The total energy consumption \mathcal{P} is a convex function of the stresses if $B_{k,k}$ is positive definite, for all $k = 1, \ldots, K$. Since equation A4 is independent of k, all blocks are the same, so we refer to them using B instead of $B_{k,k}$. Without loss of generality, each branch of an unlooped WDN can be considered as N wells connected in series, so we have that

$$ V(q) = f_{\phi,1}(q_1 + q_{i+1} + \cdots + q_N) + f_{\phi,2}(q_{i+1} + \cdots + q_N) + \cdots + f_{\phi,0}(q_1 + \cdots + q_N) + v_0. \quad (A5) $$

Based on equation (A5), we derive the first-order partial derivative

$$ \frac{\partial V_r}{\partial q_i} = \frac{\partial \mathcal{P}}{\partial q_i} = \sum_{r=1}^{\min(i,j)} \frac{df_{r-1}}{dw_{r-1}} \quad (A6) $$

and then we derive the second-order partial derivative

$$ \frac{\partial^2 V_r}{\partial q_i \partial q_j} = \frac{\partial^2 \mathcal{P}}{\partial q_i \partial q_j} = \frac{\eta_j}{\eta_i} \frac{\partial^2 f_{r-1}}{\partial w_{r-1}^2} + \cdots + \frac{\eta_i}{\eta_j} \frac{\partial^2 f_{r-1}}{\partial w_{r-1}^2} \quad (A7) $$

As discussed in section 3, functions f_j are convex and monotonic, hence $df_j/dw_j \geq 0$, and $d^2 f_j/dw_j^2 \geq 0$. Based on this and on equations (A3), (A7), follows that the Hessian $\frac{\partial^2 V_r}{\partial q_i \partial q_j}$ is a O matrix, hence positive definite for all $r = 1, \ldots, N$, thus proving point (1). By combining equations (A5), (A6), and (A7) into equation (A4), the elements B_{ij} take the form

$$ B_{ij} = \frac{\partial^2 \mathcal{P}}{\partial q_i \partial q_j} = \eta_j \frac{\partial h_k}{\partial q_i} \frac{\partial h_k}{\partial q_j} + \sum_{r=1}^{N} \eta_j \frac{\partial^2 v_r}{\partial q_i \partial q_j} \quad (A8) $$

hence, matrix B is the sum of three matrices

$$ B = \mathbb{V} - \mathbb{H} + \mathbb{W}, $$

which are positive definite, as $-\mathbb{H}$ has the same properties as the Jacobian matrix $-\partial h_k/\partial q_i$, and matrices \mathbb{V} and \mathbb{W} are O matrices (equation (A3)). This proves point (2), as the sum of positive definite matrices is again positive definite.

[51] Acknowledgments. This work was funded by the Danish Strategic Research Council, Sustainable Energy and Environment Programme, as part of the Well Field optimization project (see http://wellfield.dhigroup.com/).

References

