Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound

Fischer, Andreas; Aagaard Madsen, Helge; Kragh, Knud Abildgaard; Bertagnolio, Franck

Publication date: 2014

Citation (APA):
Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound

Andreas Fischer
Helge Aagaard Madsen
Knud Abildgaard Kragh
Franck Bertagnolio

DTU Wind Energy
Technical University of Denmark
P.O. 49, DK-4000 Roskilde, Denmark
asfi@dtu.dk
(Normal) Amplitude Modulation (NAM) of Wind Turbine Noise [1]

- Swishing sound radiated when the blade moves downwards
- Peak to trough level a few dB
- Normally only perceived close to the wind turbine (1-2D)
- Can be explained by the directivity of trailing edge noise

Directivity of noise emitted from an airfoil with finite chord length [3]

\[kc=10 \quad kc=50 \]
(Other) Amplitude Modulation (OAM) of Wind Turbine Noise [1]

- Described as thumping sound
- More low frequency content and higher peak to trough level than normal AM
- Perceived at larger distance from the wind turbine
- Perceive at up and downwind locations
- Transient stall as a possible explanation

Directivity of noise emitted from an airfoil with finite chord length [3]

\[kc = 1 \]
\[kc = 5 \]
Objectives

• Investigate the source of trailing edge noise and stall noise (surface pressure field) on a full scale wind turbine rotor

• Relate surface pressure field to emitted far field sound

• Identify wind conditions which can lead to OAM

• Outline control strategies to alleviate OAM
Outline

• Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)

• Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)

• Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)

• Control strategies to alleviate (Other)AM

• Conclusions
Outline

- Experimental noise source characterisation on a full scale rotor
 (DAN-AERO MW project)

- Relation between noise source and emitted far field sound
 (measurement in Virginia Tech Wind Tunnel)

- Critical atmospheric conditions to cause (Other)AM
 (DAN-AERO MW project)

- Control strategies to alleviate (Other)AM

- Conclusions
NEG-Micon NM80 Wind turbine with inflow sensors

DANAERO MW project [4], Vestas, Siemens, LM Wind Power, DONG Energy, DTU, 2007-2010

- Pressure tabs at r=13m, 19m, 30m and 37m
- Pitot tubes at r= 14.5m, 20.3m, 31m and 36m
- 60 Microphones at r=37m for high frequency surface pressure measurements

Four 5 hole pitot tubes installed on a NM80 turbine
Campaign measurements from June to September 2009 – DANAERO MW project

- Microphone holes
- Pressure holes
NEG-Micon NM80 Wind Turbine (DANAERO MW project)

• Technical Data:
 – Rated power 2.3MW
 – Hub height 57m
 – Rotor diameter 80m
 – LM38.8 blades

• Unusual operational conditions:
 – Constant rotational speed (16.23rpm = 1.7rad/s)
 – Pitch -4.5° (towards higher AoAs, forced to stall)
 – High wind speed (above 12m/s at hub)
 – Yaw +/-10°
Wind velocity profile measured at the met mast on Sept. 1, 2009 (10min average)

Shear exponent 0.3

met mast mean wind speed

10:00

11:40

Rotor Disc
Wind velocity profile measured at the met mast on Sept. 1, 2009 (10min average)

10:00

met mast mean wind speed

Shear exponent 0.3

11:40

met mast mean wind speed

Shear exponent 0.3
Surface pressure level on suction side at $x/c=0.84$, Sept. 1, 2009 (evaluated every 0.5 sec)

10:05

Surface Pressure Level [dB$_{1/12}$]

11:48

Surface Pressure Level [dB$_{1/12}$]
Aerofoil Pressure distribution Sept 1, 2009, 11:48

\begin{itemize}
\item \(t=1.24s, \alpha=8.7^\circ \)
\item \(t=4.74s, \alpha=9.1^\circ \)
\item \(t=8.74s, \alpha=9.3^\circ \)
\item \(t=3.74s, \alpha=11.9^\circ \)
\item \(t=2.74s, \alpha=12.9^\circ \)
\item \(t=6.24s, \alpha=12.9^\circ \)
\end{itemize}
Outline

• Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)

• Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)

• Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)

• Control strategies to alleviate (Other)AM

• Conclusions
Virginia Tech Stability Wind Tunnel
Virginia Tech Stability Wind Tunnel
Virginia Tech Stability Wind Tunnel

- Air exchange tower
- 0.5MW Drive and Fan
- Flow
- Acoustic test section
- Anechoic chambers
- Control room
- 3m
Prediction of far field sound pressure with measured surface pressure

Trailing edge noise [5]:

\[S_f(y, \omega) = \left(\frac{\omega y_2 b}{2\pi c_0 S_0^2} \right)^2 \left| I \left(\frac{\omega}{U_c}, K_3 \right) \right|^2 \Pi_0 \left(\frac{\omega}{U_c}, k_0 \frac{y_3}{S_0} \right) \]

The effect of stall on noise emission:
Outline

• Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)

• Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)

• Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)

• Control strategies to alleviate (Other)AM

• Conclusions
DANAERO MW Project 2009
Vestas, Siemens, LM Wind Power, DONG Energy, DTU

Siemens 3.6 MW Turbine

Pitot tube mounted at radial position r=36m
Høvsøre Test Site

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cup anemometer, boom mounted on aviation met mast</td>
<td>160m</td>
</tr>
<tr>
<td>Cup anemometer top mounted</td>
<td>116.5m</td>
</tr>
<tr>
<td>Cup anemometer, wind vane, sonic anemometer, temperature, differential temperature, relative humidity, air pressure</td>
<td>100m</td>
</tr>
<tr>
<td>Cup anemometer, sonic anemometer, differential temperature</td>
<td>80m</td>
</tr>
<tr>
<td>Cup anemometer, sonic anemometer, differential temperature, wind vane</td>
<td>60m</td>
</tr>
<tr>
<td>Cup anemometer, sonic anemometer, differential temperature</td>
<td>40m</td>
</tr>
<tr>
<td>Sonic anemometer</td>
<td>20m</td>
</tr>
<tr>
<td>Cup anemometer, sonic anemometer, differential temperature, wind vane</td>
<td>10m</td>
</tr>
</tbody>
</table>
Correlation of wind shear to variations in angle of attack

March 28, 2007
Correlation of wind shear to variations in angle of attack

March 28, 2007

Profiles at Hoevsoere on March 26-2007
Correlation of wind shear to variations in angle of attack

Difference between inflow angle (IA) and angle of attack (AOA)

WIND SHEAR MARCH 28, 2007

RANGE OF IA and AOA [deg.]

LINEAR WIND SHEAR SLOPE [(m/s)/m]
Outline

• Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)

• Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)

• Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)

• Control strategies to alleviate (Other)AM

• Conclusions
Mitigation - Decreasing mean angle of attack

- HawcStab2 simulations with varying min pitch angle
Mitigation - Decreasing angle of attack variations

- HAWC2 simulations with individual pitch control, sheared inflow exp=0.5, no turbulence
Mitigation - Decreasing angle of attack variations

- Yaw misalignment
Outline

• Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)

• Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)

• Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)

• Control strategies to alleviate (Other)AM

• Conclusions
Conclusions

- Variation of the angle of attack during a revolution causes changes in the spectral energy of the noise sources on the blade.

- Under normal conditions the variations of spectral energy are too small to lead to amplitude modulation far away from the turbine (NAM).

- If the blade undergoes transient stall the spectral energy in the low frequency range is significantly increased and it can lead to OAM.

- Wind conditions leading to transient stall: high shear in combination with a mean wind speed close to rated wind speed.

- Control strategies to mitigate OAM:
 - reducing the mean angle of attack (collective pitch)
 - reducing the angle of attack variations (individual pitch or yaw control)
References

Thank you!